|
1.Vasilios Papastergiou, R.L., Douglas MacDonald, Emmanuel A. Tsochatzis, Global Epidemiology of Hepatitis B Virus (HBV) Infection. Current Hepatology Reports, 2015. 14(3): p. 171-178. 2.Stevens, C.E., et al., Perinatal hepatitis B virus transmission in the United States. Prevention by passive-active immunization. Jama, 1985. 253(12): p. 1740-5. 3.Dusheiko, G., Treatment of HBeAg positive chronic hepatitis B: interferon or nucleoside analogues. Liver Int, 2013. 33 Suppl 1: p. 137-50. 4.Seeger, C. and W.S. Mason, Hepatitis B virus biology. Microbiol Mol Biol Rev, 2000. 64(1): p. 51-68. 5.Kwon, H. and A.S. Lok, Hepatitis B therapy. Nat Rev Gastroenterol Hepatol, 2011. 8(5): p. 275-84. 6.Tang, C.M., T.O. Yau, and J. Yu, Management of chronic hepatitis B infection: current treatment guidelines, challenges, and new developments. World J Gastroenterol, 2014. 20(20): p. 6262-78. 7.Howard, C.R., The biology of hepadnaviruses. J Gen Virol, 1986. 67 ( Pt 7): p. 1215-35. 8.Rehermann, B. and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol, 2005. 5(3): p. 215-29. 9.Locarnini, S., Molecular virology of hepatitis B virus. Semin Liver Dis, 2004. 24 Suppl 1: p. 3-10. 10.Liang, T.J., Hepatitis B: the virus and disease. Hepatology, 2009. 49(5 Suppl): p. S13-21. 11.Garcia, P.D., et al., Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J Cell Biol, 1988. 106(4): p. 1093-104. 12.Benhenda, S., et al., Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res, 2009. 103: p. 75-109. 13.Tang, H., et al., Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci, 2006. 97(10): p. 977-83. 14.Liu, B., et al., Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy, 2014. 10(3): p. 416-30. 15.Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife, 2012. 1. 16.Schmitz, A., et al., Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog, 2010. 6(1): p. e1000741. 17.Bartenschlager, R., M. Junker-Niepmann, and H. Schaller, The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol, 1990. 64(11): p. 5324-32. 18.Chiang, P.W., et al., Characterization of a cis element required for packaging and replication of the human hepatitis B virus. Virology, 1992. 186(2): p. 701-11. 19.Bartenschlager, R. and H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. Embo j, 1992. 11(9): p. 3413-20. 20.Junker-Niepmann, M., R. Bartenschlager, and H. Schaller, A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. Embo j, 1990. 9(10): p. 3389-96. 21.Pollack, J.R. and D. Ganem, An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol, 1993. 67(6): p. 3254-63. 22.Gerlich, W.H. and W.S. Robinson, Hepatitis B virus contains protein attached to the 5'' terminus of its complete DNA strand. Cell, 1980. 21(3): p. 801-9. 23.Wang, G.H. and C. Seeger, The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell, 1992. 71(4): p. 663-70. 24.Zoulim, F. and C. Seeger, Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol, 1994. 68(1): p. 6-13. 25.Seeger, C., D. Ganem, and H.E. Varmus, Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science, 1986. 232(4749): p. 477-84. 26.Will, H., et al., Replication strategy of human hepatitis B virus. J Virol, 1987. 61(3): p. 904-11. 27.Morikawa, K., G. Suda, and N. Sakamoto, Viral life cycle of hepatitis B virus : host factors and druggable targets. Hepatol Res, 2016. 28.Lambert, C., T. Doring, and R. Prange, Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol, 2007. 81(17): p. 9050-60. 29.Watanabe, T., et al., Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10205-10. 30.Chai, N., et al., Properties of subviral particles of hepatitis B virus. J Virol, 2008. 82(16): p. 7812-7. 31.Wynne, S.A., R.A. Crowther, and A.G. Leslie, The crystal structure of the human hepatitis B virus capsid. Mol Cell, 1999. 3(6): p. 771-80. 32.Zhou, S. and D.N. Standring, Hepatitis B virus capsid particles are assembled from core-protein dimer precursors. Proc Natl Acad Sci U S A, 1992. 89(21): p. 10046-50. 33.Gallina, A., et al., A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J Virol, 1989. 63(11): p. 4645-52. 34.Zlotnick, A., et al., Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry, 1996. 35(23): p. 7412-21. 35.Hatton, T., S. Zhou, and D.N. Standring, RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol, 1992. 66(9): p. 5232-41. 36.Nassal, M., The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol, 1992. 66(7): p. 4107-16. 37.Beames, B. and R.E. Lanford, Carboxy-terminal truncations of the HBV core protein affect capsid formation and the apparent size of encapsidated HBV RNA. Virology, 1993. 194(2): p. 597-607. 38.Birnbaum, F. and M. Nassal, Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol, 1990. 64(7): p. 3319-30. 39.Albin, C. and W.S. Robinson, Protein Kinase Activity in Hepatitis B Virus. J Virol, 1980. 34(1): p. 297-302. 40.Gerlich, W.H., et al., Specificity and localization of the hepatitis B virus-associated protein kinase. J Virol, 1982. 42(3): p. 761-6. 41.Roossinck, M.J. and A. Siddiqui, In vivo phosphorylation and protein analysis of hepatitis B virus core antigen. J Virol, 1987. 61(4): p. 955-61. 42.Yeh, C.T. and J.H. Ou, Phosphorylation of hepatitis B virus precore and core proteins. J Virol, 1991. 65(5): p. 2327-31. 43.Liao, W. and J.H. Ou, Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol, 1995. 69(2): p. 1025-9. 44.Jung, J., et al., Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J Virol, 2014. 88(16): p. 8754-67. 45.Lan, Y.T., et al., Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology, 1999. 259(2): p. 342-8. 46.Gazina, E.V., et al., Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J Virol, 2000. 74(10): p. 4721-8. 47.Melegari, M., S.K. Wolf, and R.J. Schneider, Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol, 2005. 79(15): p. 9810-20. 48.Lewellyn, E.B. and D.D. Loeb, Serine phosphoacceptor sites within the core protein of hepatitis B virus contribute to genome replication pleiotropically. PLoS One, 2011. 6(2): p. e17202. 49.Daub, H., et al., Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol, 2002. 76(16): p. 8124-37. 50.Yeh, C.T., et al., Cell cycle regulation of nuclear localization of hepatitis B virus core protein. Proc Natl Acad Sci U S A, 1993. 90(14): p. 6459-63. 51.Kann, M. and W.H. Gerlich, Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J Virol, 1994. 68(12): p. 7993-8000. 52.Kau, J.H. and L.P. Ting, Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol, 1998. 72(5): p. 3796-803. 53.Ludgate, L., et al., Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol, 2012. 86(22): p. 12237-50. 54.Zheng, Y., X.D. Fu, and J.H. Ou, Suppression of hepatitis B virus replication by SRPK1 and SRPK2 via a pathway independent of the phosphorylation of the viral core protein. Virology, 2005. 342(1): p. 150-8. 55.Machida, A., et al., Phosphorylation in the carboxyl-terminal domain of the capsid protein of hepatitis B virus: evaluation with a monoclonal antibody. J Virol, 1991. 65(11): p. 6024-30. 56.Obata, T., et al., Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem, 2000. 275(46): p. 36108-15. 57.Pearson, R.B. and B.E. Kemp, Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol, 1991. 200: p. 62-81. 58.Aberle, H., et al., beta-catenin is a target for the ubiquitin-proteasome pathway. Embo j, 1997. 16(13): p. 3797-804. 59.Bjorkoy, G., et al., Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol, 2009. 452: p. 181-97. 60.Yoshimori, T., et al., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem, 1991. 266(26): p. 17707-12. 61.Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005. 307(5712): p. 1098-101. 62.Jethwa, N., et al., Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci, 2015. 128(18): p. 3456-65. 63.Kann, M., et al., Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J Cell Biol, 1999. 145(1): p. 45-55. 64.Walz, H.A., et al., Isoform-specific regulation of Akt signaling by the endosomal protein WDFY2. J Biol Chem, 2010. 285(19): p. 14101-8. 65.Santi, S.A. and H. Lee, The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol, 2010. 298(3): p. C580-91. 66.Jean, S. and A.A. Kiger, Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol, 2012. 13(7): p. 463-70. 67.Watt, S.A., et al., Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem J, 2004. 377(Pt 3): p. 653-63. 68.Watashi, K., et al., NTCP and beyond: opening the door to unveil hepatitis B virus entry. Int J Mol Sci, 2014. 15(2): p. 2892-905. 69.Macovei, A., et al., Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol, 2013. 87(11): p. 6415-27.
|