跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周童
研究生(外文):TONG ZHOU
論文名稱:估計具固定效果的隨機邊界模型的變數衡量誤差問題:一般動差估計法
論文名稱(外文):Estimating the Fixed-Effect Stochastic Frontier Models with Error in Variables: A GMM Method
指導教授:王泓仁王泓仁引用關係
指導教授(外文):Hung-Jen Wang
口試委員:張勝凱陳怡宜
口試委員(外文):Sheng-Kai ChangYi-Yi Chen
口試日期:2016-01-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:經濟學研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:25
中文關鍵詞:測量誤差隨機邊界模型固定效果長期追蹤數據修正的動差估計方法
外文關鍵詞:Measurement errorStochastic Frontier ModelFixed EffectPanel Datarevised Method of Moments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自Greene (2005) 引入了固定效果的隨機邊界模型(TFESF Models)後,由於在微觀計量分析中常見的附帶參數問題(incidental parameters problem),其估計方法的改進一直受到關注。因為複雜的概似函數,傳統的最大概似法(MLE)在估計具固定效果的隨機邊界模型中遇到了問題。而當該模型出現變數衡量誤差時,參數的估計會產生偏誤。
本文擴展了Chen and Wang (2015) 提出的對於TFESF模型的動差估計法,在考慮了變數衡量問題後,提出了一個一般動差估計法來解決如何估計TFESF模型。在第一步的估計策略中,我們主要采用Hong and Tamer (2003)關於非線性變數測量誤差的模型。據此模型,我們可以得到關於模型變數系數和測量誤差變異數的估計式。此估計式具有一致性和常態的極限分配。在第二步的估計策略中,我們擴展Chen and Wang (2015)的方法,在考慮當一個變數存在測量誤差時,如何得到具有一致性和常態極限分配的估計式,如隨機邊界模型關注的無效率系數(inefficiency index)。最後,模擬的結果顯示,當樣本數充分大時,本文的估計方法能有效地降低估計偏誤(bias)和均方差(Mean Squared Error)。

Since Greene (2005) introduced the true-fixed effect stochastic frontier (TFESF) model, its estimation method has been gaining attention due to the complication from the heterogeneous effects (incidental parameters problem) in the microeconometric analysis. Traditional MLE methods have trouble dealing with it because of its inherently complex likelihood functions. The estimation also deteriorates into serious bias when measurement error problem arises for fixed effect panel data models. This paper proposes a two-step estimation strategy to address the two aforementioned problems. In the first step, we extend Hong and Tamer(2003) to obtain a consistent estimator of interest and the measurement error''s variance needed to estimate ineffciency parameters in stochastic frontier analysis in the second step. Then, we show how to extend Chen and Wang(2015) and derive the MoM estimator for TFESF models when its composite error varies in distribution. We derive closed-form estimators for two-parameter models (normal-half nor-mal or normal-exponential). Finally, simulation results indicate that our MoM estimators have good performance for finite sample sizes.


口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
1 Introduction 1
2 Literature Review 3
2.1 Stochastic Frontier Models (SF Models) 3
2.2 Method of Moment Estimators for the Fixed Effect SF Models 5
2.3 Measurement Errors 8
2.4 Nonlinear EIV Models with Polynomial Structure 10
3 Estimation 14
3.1 The Models 14
3.2 Estimation for βo 14
3.3 Estimation for θo 16
4 Monte Carlo Simulations 17
5 Conclusion 19
References 21























[1] Aigner, Lovell, C.A.K. and Schmidt, P.(1977). "Formulation and Estimation of Stochastic Frontier Production Function Models,"Journal of Econometrics, 6: 21-37
[2] Aprajit M.ahajan (2006). “Identification and Estimation of Regression Models With Misclassification” Econometrica, 74(3): 631–665
[3] Carroll, Raymond. J., David Ruppert D., Ciprian M.Crainiceanu, Tor D. Tosteson, and Margaret Raragas, M. (2004). “Nonlinear and Nonparametric Regression and Instrumental Variables.”Journal of the American Statistical Association, 99(467): 736–50.
[4] Chen, Xiaohong, Han Hong, and Alessandro Tarozzi. (2008)“Semiparametric Efficiency in GMM Models with Auxiliary Data.” Annals of Statistics, 36(2): 808–43.
[3] Chen, Y.-T. and Wang, H.J. (2015). “Within Moment Estimators for Fixed-effect Stochastic Frontier Models” Manuscript
[4] Chen, Y.-Y., Schmidt, P. and Wang, H.J. (2014). “Consistent Estimation of the
Fixed-Effects Stochastic Frontier Model” Journal of Econometrics 181:65-76
[5] Chen, Y.-Y. and Wang, H.-J. (2004). “A Method Of Moments Estimator for a Stochastic Frontier Model with Errors in Variables” Economics Letters 85:221-228.
[6] Chen, Y.-Y. and Wang, H.-J.(2009). “Stochastic Frontier Models with Errors in Variables: A GMM Approach” (in Chinese),Taiwan Economic Review 37: 1-22.
[7] Chesher, A.ndrew, and Christian Schluter. (2002). “Welfare Measurement and Measurement Error.”Review of Economic Studies, 69(2): 357–78.
[8] Devereux, Paul J., and Gautam Tripathi. (2009). “Optimally Combining Censored and Uncensored Datasets.”Journal of Econometrics, 151(1): 17–32.
[9] G.E. Battese G.E. , T.J. Coelli T.J.  (1988) “Prediction of Firm-level Technical Efficiencies With a Generalized Frontier Production Function and Panel Data” Journal of Econometrics 38: 387-399.
[10] Greene, W.(2005). “Reconsidering Heterogeneity in Panel Data Estimators of the Stochastic Frontier Models” Journal of Econometrics 126: 269-303
[11] Griliches, Z. and Hausman, JA.(1986). “Errors in Variables in Panel Data,” Journal of Econometrics 31: 93-118.
[12] Han Hong, Elie Tamer. (2003). “A simple estimator for nonlinear error in variable models” Journal of Econometrics 117: 1-19.
[13] Jondrow, J., Materov, I., Lovell, C.A.K., Schmidt, P., 1982. “On the estimation of technical inefficiency in the stochastic frontier production function model” Journal
of Econometrics 19: 233-238.
[14] Lewbel, Arthur. (2007). “Estimation of Average Treatment Effects with Misclassification.”Econometrica,75(2): 537–51.
[15] Li, Tong. (2002). “Robust and Consistent Estimation of Nonlinear Errors-in-Variables Models.”Journal of Econometrics, 110(1): 1–26.
[16] Newey, Whitney K. (2001). “Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models.”Review of Economics and Statistics, 83(4): 616–27.
[17] Schennach, Susanne M. (2004a). “Estimation of Nonlinear Models with Measurement Error.” Econometrica, 72(1): 33–75.
[18] Schennach, Susanne M. (2004b). “Nonparametric Regression in the Presence of Measurement Error.”Econometric Theory, 20(6): 1046–93.
[19] Schennach, Susanne M. (2007). “Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models.”Econometrica, 75(1): 201–39.
[20] Yingyao Hu and Geert Ridder (2012) “Estimation of nonlinear models with mismeasured regressors using marginal information” Journal of Applied Econometrics: 27(3): 347–385.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊