|
[1] Owls-mx. http://projects.semwebcentral.org/projects/owls-mx/. Accessed: 2016-07-20. [2] Owls-tc. http://projects.semwebcentral.org/projects/owlstc/. Accessed: 2016- 07-20. [3] Xml wsdl. http://www.daml.org/services/owl-s/1.0/owl-s-wsdl.html. Ac- cessed: 2016-07-20. [4] Xml wsdl. http://www.w3schools.com/xml/xml_wsdl.asp. Accessed: 2016-07- 20. [5] D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012. [6] G. Bouma. Normalized (pointwise) mutual information in collocation extraction. Proceedings of GSCL, pages 31–40, 2009. [7] K. W. Church and P. Hanks. Word association norms, mutual information, and lex- icography. Computational linguistics, 16(1):22–29, 1990. [8] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Ma- chine learning, 42(1-2):177–196, 2001. [9] I. Kaur and A. J. Hornof. A comparison of lsa, wordnet and pmi-ir for predicting user click behavior. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 51–60. ACM, 2005. [10] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic anal- ysis. Discourse processes, 25(2-3):259–284, 1998. [11] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995. [12] F. Šarić, G. Glavaš, M. Karan, J. Šnajder, and B. D. Bašić. Takelab: Systems for measuring semantic text similarity. In Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main con- ference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pages 441–448. Association for Computational Linguistics, 2012. [13] P. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. 2001. [14] U. Zernik. Lexical acquisition: exploiting on-line resources to build a lexicon. Psy- chology Press, 1991.
|