|
[1] A. V. Aho, J. E. Hopcroft, and J. D. U. I. man. The design and analysis of computer algorithms. Addison Wesley, 1974. [2] B. Ben-Moshe, A. Dvir, M. Segal, and A. Tamir. Centdian computation in cactus graphs. Journal of Graph Algorithms and Applications, 16:199–224, 2012. [3] M. Blidia, M. Chellali, and L. Volkmann. On the p-domination number of cactus graphs. Discussiones Mathematicae Graph Theory, 2005. [4] M. Chellali. Bounds on the 2-domination number in cactus graphs. Opuscula Mathematica, 26, 2006. [5] L. Chen, C. Lu, and Z. Zeng. Hardness results and approximation algorithm for (weighted) paired-domination in graphs. Theoretical Computer Science, 410:47–49, 2009. [6] L. Chen, C. Lu, and Z. Zeng. A linear-time algorithm for paired- domination problem in strongly chordal graphs. Information Processing Letters, 110:20–23, 2009. [7] L. Chen, C. Lu, and Z. Zeng. Labelling algorithms for paired- domination problems in block and interval graphs. Journal of Combinatorial Optimization, 19:457–470, 2010. [8] L. Chen, C. Lu, and Z. Zeng. Vertices in all minimum paired- dominating sets of block graphs. Journal of Combinatorial Optimization, 24:179–191, 2012. [9] T. Cheng, L. Kang, and C. Ng. Paired domination on interval and circular-arc graphs. Discrete Applied Mathematics, 155:2077– 2086, 2007. [10] T. Cheng, L. Kang, and E. Shan. A polynomial-time algorithm for the paired-domination problem on permutation graphs. Discrete Applied Mathematics, 157:262–271, 2009. [11] K. Das and M. Pal. An optimal algorithm to find maximum and minimum height spanning trees on cactus graphs. Advanced Modeling and Optimization, 10:121–134, 2008. [12] X. gang Chen, L. Sun, and H. ming Xing. Characterization of graphs with equal domination and connected domination numbers. Discrete Mathematics, 289:129–135, 2004. [13] T. W. Haynes, S. Hedetniemi, and P. Slater. Domination in Graphs: Advanced Topics. Marcel Dekker, 1998. [14] T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. CRC Press, 1998. [15] T. W. Haynes, S. Hedetniemi, and P. Slater. Paired-domination in graphs. Networks, 32:199–206, 1998. [16] S. Hedetniemi, R. Laskar, and J. Pfaff. A linear algorithm for finding a minimum dominating set in a cactus. Discrete Applied Mathematics, 13:287–292, 1986. [17] W.-K. Hon, C.-S. Liu, S.-L. Peng, and C. Y. Tang. Power domination on block-cactus graphs. Combinatorial Mathematics and Computation Theory, 24, 2007. [18] L. Kanga, M. Y. Sohnb, and T. Chengc. Paired-domination in inflated graphs. Theoretical Computer Science, 320:485–494, 2004. [19] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems, part 1: The p-center. SIAM J. Appl. Math, 37:513– 537, 1979. [20] W. L. G. Koontz. Economic evaluation of loop feeder relief alternatives. Bell System Technical Journal, 1980. [21] Y. F. Lan and Y. L. Wang. An optimal algorithm for solving the 1-median problem on weighted 4-cactus graphs. European Journal of Operational Research, 122:602–610, 2000. [22] J. K. Lana and G. J. Chang. On the mixed domination problem in graphs. Theoretical Computer Science, 476, 2013. [23] J. K. Lana and G. J. Chang. On the algorithmic complexity of k-tuple total domination. Discrete Applied Mathematics, 174:81–91, 2014. [24] E. Lappas, S. D. Nikolopoulos, and L. Palios. An o(n)-time algorithm for the paired-domination problem on permutation graphs. European Journal of Combinatorics, 34:593–608, 2013. [25] C.-C. Lin and H.-L. Tu. Linear-time algorithms for the paired-domination problem in interval graphs and circular-arc graphs. Theoretical Computer Science, 2014. [26] S. Park, B. Kim, E. Lee, D. Lee, Y. Choi, and S.-H. Kim. A novel communication architecture to support mobile users in wireless sensor fields. IEEE Vehicular Technology Conference, pages 66–70, 2007. [27] H. Qiao, L. Kang, M. Cardei, and D.-Z. Du. Paired-domination of trees. Journal of Global Optimization, 25:43–54, 2003. [28] D. Saxena. Security in wireless sensor networks - a layer based classification. CERIAS Tech Report, 2007. [29] H. Wang, P.-Y. Kong, W. Seah, and K. Guan. A robust and energy efficient routing scheme for wireless sensor networks. International Conference Workshops on Distributed Computing Systems, pages 83–89, 2006. [30] J. Yick and D. Ghosal. Wireless sensor network survey. Computer Networks, 52:2292–2330, 2008. [31] M. Z. Zamalloa, K. Seada, and A. Helmy. Estimating the traffic on weighted cactus networks in linear time. International Conference on Information Visualization, pages 536–541, 2005. [32] M. Z. Zamalloa, K. Seada, and A. Helmy. Efficient geographic routing over lossy links in wireless sensor networks. ACM Trans- actions on Sensor Networks, 4:1–33, 2008.
|