跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林韋志
研究生(外文):Wei-Chih Lin
論文名稱:考量保育優先順序及重金屬汙染不確定性分析之汙染整治區域劃設-以八種平地保育鳥為例
論文名稱(外文):考量保育優先順序及重金屬汙染不確定性分析之汙染整治區域劃設-以八種平地保育鳥為例
指導教授:林裕彬林裕彬引用關係
口試委員:林幸助童慶斌劉仁沛丁宗蘇
口試日期:2016-05-06
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:137
中文關鍵詞:整治優先順序重金屬污染生物保育穩健決策分析不確定性地理統計
外文關鍵詞:remediation prioritymultiple heavy metalspollutionbiological conservationrobust decisiongeostatistics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣過去因受到全球工業化的衝擊,使得全台工廠林立,許多工業所排放之廢棄物,無經適當處理便直接進入農業環境中,最終污染灌溉區域水源與土壤;其中土壤重金屬污染具毒性高、持續時間長及污染物不易分解等特性,較容易造成農業環境與公眾健康較嚴重之負面影響。除此之外,土壤重金屬亦會對自然界某些物種造成影響,污染的土壤中重金屬會被較低階的消費者或是植物攝取入體內,再經由食物鏈傳遞到較高階的消費者中。因此,除了要建立完善之監控及管制程序外,同時在進行污染區域進行整治排序及決策時,應同時納入生態保育價值,並建立穩健性的整治決策。本研究建構一新的土壤種金屬整治及生態保育兼具的整治排序及決策分析方法,並以全台八種土壤重金屬以及八種保育等級鳥類為例,進行方法建構與驗證。土壤重金屬分布推估的部分,主要是根據現有調查資料,利用地理統計同時模擬八種重金屬,其在研究區內所有網格可能的空間分布,並根據環保署所制定的「台灣地區土壤重金屬含量及等級區分表」作為判定土壤重金屬污染區域之標準,並評估預測之污染地區之不確定性。本論文之鳥類空間分布推估的部分,主要是利用拔靴法及物種分布模式,模擬多組可能的物種分布,並結合生態熱點分析與系統性保育規劃模式,推估研究區內各網格之生態價值,並評估其不確定性,結合土壤重金屬模擬及不確定性分析,利用穩健的決策分析方法,分析不同整治決策的利弊,以指出在額外考量生態價值情況下,那些區域需優先進行整治。結果顯示,本研究所發展之環境汙染區域劃設及整治排序之方法,確實能夠提供決策者決定預期要達到的棲地無汙染指標(其越高代表棲地品質越好)、偽陽性率(無汙染區域卻被劃設為整治區域的比例),以及穩健性(有多少組realization達到預設的棲地無汙染指標和偽陽性率),協助決策者規劃出最佳的考量生態價值的整治排序與比例。本研究提供決策者考量生態價質的整治決策方法,且在受到資訊不確定性的影響下,以穩健性為評估指標進行環境整治之決策規劃。

In the past, due to the global industrialization, various industries were set up in Taiwan. A ton of by-products or wastes from industries have been emitted into our environment without any proper treatments. These wastes eventually lead to water pollution in irrigation area and soil pollution. Because the heavy metals emitted from industrial sector into soil are highly toxic, long-lasting and persistent, they tend to adverse effects on public health and environment. In addition, soil heavy metals also affect species inhabiting in the contaminated area via food webs. Heavy metals tend to accumulate in plants and lower-level consumers inhabiting in contaminated soil, and further magnify into higher consumers level, such as birds, through unintentionally intaking heavy metal toxicities into their body when preying on plants or lower-level consumers. Therefore, in addition to setting up monitoring and controlling processes, a comprehensive remediation design focusing on soil heavy metal contamination needs to be proposed. In this study, we took eight soil heavy metals and eight birds of which the protected level is greater than conservation-deserving level as an example. Based on the survey data of soil heavy metals, we applied geostatistics to jointly simulate the possible distribution of eight soil heavy metals in Taiwan. After that, based on Taiwan’s Environmental Protection Administration (EPA) decided classification, in which the concentrations of soil heavy metals were classified into five classes, the area with concentrations within or above fourth range are regarded as polluted. Besides, the uncertainty analysis for simulated distributions of soil heavy metals is also completed. With respect to the simulation of bird distribution, we applied bootstrap resample technique and species distribution model to generate as many distributions as possible. The area with high ecological values are delineated using Zonation, a systematic conservation model, based on the possible bird distributions. Similar to soil heavy metals, the uncertainty analysis for simulated distributions of bird was also completed. Finally, based on the simulated maps of soil heavy metals and birds, a robust decision-making approach is used to evaluate the performance of each candidate solution and decide the area in need for remediation. The results show the approach proposed in this study can help decision-makers to set up the remediation area given the pollution-free habitat suitability (index of ecological value based on environmental pollution), false positive rate (dividing the number of non-polluted areas that are wrongly classified as contaminated by the total number of non-polluted areas) and robustness (the proportion of realizations in which the pollution-free habitat suitability and false positive rate both reach pre-defined standards). This study provides decision-makers with a structural approach in consideration of the influence of uncertainty which is applicable to the decision making regarding environmental remediation based on the quantified robustness.

口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 V
表目錄 XI
圖目錄 XII
一、緒論 1
1.1研究動機與方向 1
1.2 研究目的 3
1.3 研究架構 4
二、文獻回顧 5
2.1土壤重金屬調查情形 5
2.2土壤重金屬污染來源及傳輸途徑 8
2.3 土壤重金屬的存在型態與危害 12
2.4重金屬對生態(鳥類)的影響 16
2.5地理統計(土壤重金屬空間分布模式與不確定性分析) 18
2.5.1地理統計在土壤重金屬濃度推估的應用 18
2.5.2土壤重金屬濃度聯合模擬 20
2.5.3 地理統計模式之不確定性 22
2.6土壤汙染區劃定與決策分析 25
2.7物種分布模式與不確定性分析 29
2.8生態保育區之劃定 32
2.9土壤重金屬整治與生態(鳥類)保育 35
三、研究理論與方法 38
3.1研究區域與資料 38
3.1.1研究區域 38
3.1.2鳥類資料 39
3.1.3土壤重金屬資料 40
3.2 地理統計理論與模擬 42
3.2.1 區域化變數理論 42
3.2.2 半變異圖及常用模型 44
3.2.3 一般克立金 45
3.2.4 逐步高斯模擬法 46
3.3 U-WEDGE 48
3.4變數空間相關性去除的效率指標 50
3.5物種分布模式 52
3.5.1 羅吉斯迴歸 52
3.5.2 GAM 52
3.5.3 支持向量機(supporting vector machine, SVM) 53
3.6 拔靴法 55
3.7 LISA 56
3.8局部與空間不確定性分析 57
3.9 Zonation 59
3.10 決策分析方法:Information-gap decision theory (IGDT) 61
四、結果與討論 66
4.1物種空間分布與生態保育優先順序 66
4.2 土壤重金屬的統計特性與空間特性 80
4.3 模擬的土壤重金屬濃度與污染地區 83
4.4 鳥類生態熱點與土壤重金屬汙染 91
4.5 土壤重金屬整治區域之決策分析 93
4.6 開發軟體之展示 105
4.6.1 多變量土壤重金屬汙染之空間模擬 105
4.6.2 土壤汙染整治區域之決策分析 109
4.7 未來生態風險評估模式建立 112
五、結論與建議 114
六、參考文獻 117


1.[USEPA] U.S. Environmental Protection Agency. 2008. Draft US EPA’s vapor intrusion database: Preliminary evaluation of attenuation factors. Washington, D.C.: USEPA Office of Solid Waste. March.
2.Ahmed, S. H., El Sheikh, E. M., & Morsy, A. M. A. (2014). Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. Journal of environmental radioactivity, 134, 120-127.
3.Allard, P., Fairbrother, A., Hope, B. K., Hull, R. N., Johnson, M. S., Kapustka, L., ... & Sample, B. E. (2010). Recommendations for the development and application of wildlife toxicity reference values. Integrated environmental assessment and management, 6(1), 28-37.
4.Alloway, B. J., & Alloway, B. J. (Eds.). (1995). Heavy metals in soils. Springer Science & Business Media.
5.Anderson, R. P., Mart´ınez-Meyer, E. (2004).Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116, 167-179.
6.Anderson, R.P., G´omez-Laverde, M., Peterson, A.T. (2002). Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecol. Biogeogr, 11: 131-141.
7.Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.
8.Armstrong, M. (1998). Basic linear geostatistics. Springer Science & Business Media.
9.Bagchi, R., Crosby, M., Huntley, B., Hole, D.G., Butchart, S.H., Collingham, Y., Kalra, M., Rajkumar, J., Rahmani, A. Pandey, M. (2013). Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Global change biology. 19: 1236-1248.
10.Ball, I. R., & Possingham, H. P. (2000). MARXAN (V1. 8.2). Marine Reserve Design Using Spatially Explicit Annealing, a Manual.
11.Bard Y (1974) Non-linear parameter estimation. Academic Press, New York.
12.Barry, S. Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43: 413-423.
13.Belskii, E. A., Lugas'' Kova, N. V., & Karfidova, A. A. (2005). Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russian Journal of Ecology, 36(5), 329-335.
14.Bengtsson, G., Nordström, S., & Rundgren, S. (1983). Population density and tissue metal concentration of lumbricids in forest soils near a brass mill.Environmental Pollution Series A, Ecological and Biological, 30(2), 87-108.
15.Ben-Haim, Y. (2001). Information-gap decision theory: decisions under severe uncertainty. Academic Pr.
16.Beyer, W. N., & Storm, G. (1995). Ecotoxicological damage from zinc smelting at Palmerton, Pennsylvania. Handbook of ecotoxicology, 509-608.
17.Bjuhr, J. (2007). Trace Metals in Soils Irrigated with Waste Water in a Periurban Area Downstream Hanoi City, Vietnam, Seminar Paper.
18.Boucher A, Dimitrakopoulos R (2009) Block-support simulation of multiple correlated variables. Math Geosci 41:215–237
19.Bowie, S. H. V., & Thornton, I. (1985). Environmental geochemistry and health. Report to the Royal Society''s British National Committee for problems of the environment. D. Reidel Publishing Company.
20.Buerger, T. T., Mirarchi, R. E., & Lisano, M. E. (1986). Effects of lead shot ingestion on captive mourning dove survivability and reproduction. The Journal of wildlife management, 1-8.
21.Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic regression. Source code for biology and medicine, 3(1), 1.
22.Busby, J.R. (1986).A biogeographical analysis of Nothofaguscunninghamii (Hook.)Oerst.in southeastern Australia. Aust. J. Ecol., 11: 1-7.
23.Cai, Q., Long, M. L., Lui, J., Zhu, M., Zhou, Q. Z., Deng, Y. D., ... & Tain, Y. J. (2008). Correlation between heavy metal concentration in cattle tissues and rearing environment. Chinese J. of Ecol, 27(02), 202-207.
24.Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511.
25.Carpenter, G., Gillison, A. N. Winter, J. (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2: 667-680.
26.Chang, T.K., Chang, N.C., Shyu, G.S., Lin, Y.P., 2000. Mapping soil mercury in Taiwan
27.Chen, Y. Y., Wang, J., Gao, W., Sun, X. J., & Xu, S. Y. (2012). Comprehensive analysis of heavy metals in soils from Baoshan District, Shanghai: a heavily industrialized area in China. Environmental Earth Sciences, 67(8), 2331-2343.
28.Chow, T. E., Gaines, K. F., Hodgson, M. E., & Wilson, M. D. (2005). Habitat and exposure modelling for ecological risk assessment: A case study for the raccoon on the Savannah River Site. Ecological Modelling, 189(1), 151-167.
29.Cid, F. D., Gatica-Sosa, C., Antón, R. I., & Caviedes-Vidal, E. (2009). Contamination of heavy metals in birds from Embalse La Florida (San Luis, Argentina). Journal of Environmental Monitoring, 11(11), 2044-2051.
30.Cook, R. R., & Auster, P. J. (2005). Use of simulated annealing for identifying essential fish habitat in a multispecies context. Conservation Biology, 19(3), 876-886.
31.Cord, A. Rödder, D. (2011) Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data? Ecological Applications, 21: 3285-3298.
32.Culbard, E. B., Thornton, I., Watt, J., Wheatley, M., Moorcroft, S., & Thompson, M. (1988). Metal contamination in British urban dusts and soils. Journal of environmental quality, 17(2), 226-234.
33.D''amore, J. J., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils. Journal of Environmental Quality, 34(5), 1707-1745.
34.David M (1988) Handbook of applied advance geostatistical ore reserve estimation. Elsevier, Amsterdam.
35.Delavenne, J. (2012). Conservation of marine habitats under multiple human uses: Methods, objectives and constraints to optimize a Marine Protected Areas network in the Eastern English Channel. Université du Littoral Côte d''Opale.
36.Delbari, M., Afrasiab, P., & Loiskandl, W. (2009). Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. Catena, 79(2), 163-169.
37.Derome, J., & Nieminen, T. (1998). Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environmental Pollution,103(2), 219-228.
38.Desbarats J. A., Dimitrakopoulos R (2000) Geostatistical simulation of regionalized pore-size distributions using Min/Max autocorrelation factors. Math Geol 32:919–942.
39.Deutsch, C. V. (2004). A statistical resampling program for correlated data: spatial_bootstrap. Centre for Computational Geostatistics Annual Report, 6.
40.Deutsch, C. V., & Journel, A. G. (1997). GSLIB: Geostatistical Software Library and User’s Guide (Applied Geostatistics)(p. 384).
41.DeVolder, P. S., Brown, S. L., Hesterberg, D., & Pandya, K. (2003). Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. Journal of environmental quality, 32(3), 851-864.
42.Dormannet, C.F., Purschke, O., Márquez, J.R.G., Lautenbach, S., Schröder, B. (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology, 89: 3371-3386
43.Eeva, T., & Lehikoinen, E. (1995). Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia, 102(3), 312-323.
44.Eeva, T., & Lehikoinen, E. (2000). Pollution: Recovery of breeding success in wild birds. Nature, 403(6772), 851-852.
45.Eeva, T., & Lehikoinen, E. (2004). Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher. Functional Ecology, 18(4), 548-553.
46.Eeva, T., Ahola, M., & Lehikoinen, E. (2009). Breeding performance of blue tits (< i> Cyanistes caeruleus) and great tits (< i> Parus major) in a heavy metal polluted area. Environmental pollution, 157(11), 3126-3131.
47.Efron, B. (1992). Bootstrap methods: another look at the jackknife (pp. 569-593). Springer New York.
48.Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677.
49.Elith, J., Graham, C. H., Anderson, R. P., Dudı´k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Sobero´n, J., Williams, S., Wisz, M. S. Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129-151
50.Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
51.Fang, S. B., Jia, X. B., Yang, X. Y., Li, Y. D., & An, S. Q. (2012). A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals. Journal of hazardous materials, 237, 290-298.
52.Fernández, M., Hamilton, H., & Kueppers, L. (2013). Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere, 4(5), art61.
53.Fox, G. A., Collins, B., Hayakawa, E., Weseloh, D. V., Ludwig, J. P., Kubiak, T. J., & Erdman, T. C. (1991). Reproductive outcomes in colonial fish-eating birds: A biomarker for developmental toxicants in Great Lakes food chains: II. Spatial variation in the occurrence and prevalence of bill defects in young Double-crested Cormorants in the Great Lakes, 1979–1987. Journal of Great Lakes Research, 17(2), 158-167.
54.Franco, C., Soares, A., & Delgado, J. (2006). Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma, 136(3), 852-864.
55.Gay, J. R., & Korre, A. (2006). A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 142(2), 227-234.
56.Gibson, L., Barrett, B., Burbidge, A. (2007). Dealing with uncertain absences in habitat modelling: a case study of a rare ground‐dwelling parrot. Diversity and Distributions, 13: 704-713.
57.Gilyazov, A. S. (1992, April). Air pollution impact on the bird communities of the Lapland Biosphere Reserve. In Aerial pollution in Kola Peninsula. Proceedings of the international workshop (pp. 383-390).
58.Goovaerts P (1993) Spatial orthogonality of the principal components computed from coregionalized variables. Math Geol 25(3):281–302
59.Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science.Geoderma, 103(1), 3-26.
60.Goovaerts, P. (2009). Medical geography: a promising field of application for geostatistics. Mathematical Geosciences, 41(3), 243-264.
61.Gordon, A., Simondson, D., White, M., Moilanen, A., & Bekessy, S. A. Integrating conservation planning and landuse planning in urban landscapes. (2009) Landscape and Urban Planning, 91(4), 183-194.
62.Gorissen, L., Snoeijs, T., Van Duyse, E., & Eens, M. (2005). Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia, 145(3), 504-509.
63.Graham, C. H., Ferrier, S., Huettman, F.; Moritz, C., Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology Evolution, 19: 497-503.
64.Graham, C. H., Moritz, C., Williams, S.E. (2006). Habitat history improves prediction of biodiversity in a rainforest fauna. Proc. Nat. Acad. Sci. USA.
65.Granadeiro, J. P., Andrade, J., & Palmeirim, J. M. (2004) Modelling the distribution of shorebirds in estuarine areas using generalised additive models. Journal of Sea Research, 52 (3), 227-240.
66.Guisan A, Graham CH, Elith J, Huettmann F and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib., 13: 332-340.
67.Guisan, A., Lehmann, A., Ferrier, S., Austin, M., OVERTON, J., Aspinall, R. Hastie, T. (2006) Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 43:386-392.
68.Guisan, A.; Edwards, T.C., Jr.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100.
69.Guo, Q.; Kelly, M.; Graham, C.H. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol. Model. 2005, 182, 75–90.
70.Ha, H., Olson, J. R., Bian, L., & Rogerson, P. A. (2014). Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environmental science & technology, 48(9), 4999-5007.
71.Hakanson, L. (1990). An operative system for environmental consequence analysis for aquatic ecosystems. Sediments: chemistry and toxicity of in-place pollutants, Lewis Publishers, Michigan, 365-390.
72.Harp, D. R., & Vesselinov, V. V. (2013). Contaminant remediation decision analysis using information gap theory. Stochastic Environmental Research and Risk Assessment, 27(1), 159-168.
73.Hayes, K. R., Barry, S. C., Hosack, G. R., & Peters, G. W. (2013). Severe uncertainty and info‐gap decision theory. Methods in Ecology and Evolution, 4(7), 601-611.
74.Hengl, T., Sierdsema, H., Radović, A., & Dilo, A. (2009). Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220(24), 3499-3511.
75.Hirzel, A.H., Hausser, J., Chessel, D.,Perrin, N.(2002). Ecological-niche factor analysis: How to compute habitat suitability maps without absence data? Ecology, 83(7): 2027-2036
76.Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013). Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193, 200-212.
77.Horn, H. L. (2011). Strategic conservation planning for terrestrial animal species in the Central Interior of British Columbia. Journal of Ecosystems and Management, 12(1).
78.Hsu, M. J., Selvaraj, K., & Agoramoorthy, G. (2006). Taiwan''s industrial heavy metal pollution threatens terrestrial biota. Environmental Pollution, 143(2), 327-334.
79.Hu, K. L., Zhang, F. R., Li, H., Huang, F., & Li, B. G. (2006). Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing. Pedosphere, 16(6), 690-698.
80.Huo, X. N., Li, H., Sun, D. F., Zhou, L. D., & Li, B. G. (2012). Combining geostatistics with Moran’s I analysis for mapping soil heavy metals in Beijing, China.International journal of environmental research and public health, 9(3), 995-1017.
81.Huo, X. N., Zhang, W. W., Sun, D. F., Li, H., Zhou, L. D., & Li, B. G. (2011). Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. International journal of environmental research and public health, 8(6), 2074-2089.
82.Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of hazardous materials, 192(2), 887-898.
83.Ives, A. R., & Cardinale, B. J. (2004). Food-web interactions govern the resistance of communities after non-random extinctions. Nature, 429(6988), 174-177.
84.Johnson, C. J., & Gillingham, M. P. (2008). Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou. Ecological Modelling, 213(2), 143-155.
85.Jones, L. H. P., & Jarvis, S. C. (1981). The fate of heavy metals. The chemistry of soil processes, 593-620.
86.Juang, K. W., Chen, Y. S., & Lee, D. Y. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229-238.
87.Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225-233.
88.Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC press.
89.Kerry, R.; Goovaerts, P.; Haining, R.P.; Ceccato, V. Applying geostatistical analysis to crime data: Car‐related thefts in the baltic states. Geogr. Anal. 2010, 42, 53–77.
90.Kim, J., Shin, J. R., & Koo, T. H. (2009). Heavy metal distribution in some wild birds from Korea. Archives of environmental contamination and toxicology, 56(2), 317-324.
91.Kitanidis, P. K. (1983). Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water resources research, 19(4), 909-921.
92.Kooistra, L., Huijbregts, M. A., Ragas, A. M., Wehrens, R., & Leuven, R. S. (2005). Spatial variability and uncertainty in ecological risk assessment: A case study on the potential risk of cadmium for the little owl in a Dutch river flood plain. Environmental science & technology, 39(7), 2177-2187.
93.Korteling, B., Dessai, S., & Kapelan, Z. (2013). Using information-gap decision theory for water resources planning under severe uncertainty. Water resources management, 27(4), 1149-1172.
94.Kremen, C., Cameron, A., Moilanen, A., Phillips, S. J., Thomas, C. D., Beentje, H., . . . Zjhra, M. L. (2008). Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320(5873), 222-226.
95.Kuo, S. A., Heilman, P. E., & Baker, A. S. (1983). DISTRIBUTION AND FORMS OF COPPER, ZINC, CADMIUM, IRON, AND MANGANESE IN SOILS NEAR A COPPER SMELTER1. Soil Science, 135(2), 101-109.
96.Kwon, Y. T., & Lee, C. W. (1998). Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area.Science of the total environment, 214(1), 203-210.
97.Larison, J. R., Likens, G. E., Fitzpatrick, J. W., & Crock, J. G. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406(6792), 181-183.
98.Lark, R. M., & Webster, R. (2006). Geostatistical mapping of geomorphic variables in the presence of trend. Earth Surface Processes and Landforms,31(7), 862-874.
99.Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1-25.
100.Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., Julian, K., . . . Duffy, C. (2008). Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 1(2), 91-102.
101.Lee, P. F., Ding, T. S., Hsu, F. H., & Geng, S. (2004) Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, 31 (2), 307-314
102.Leharne, S., Charlesworth, D., & Chowdhry, B. (1992). A survey of metal levels in street dusts in an inner London neighbourhood. Environment International, 18(3), 263-270.
103.Levitt, J. (1980). Responses of Plants to Environmental Stresses, 2nd Edn, vol. 2. Academic Press, New York .
104.Li, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of The Total Environment, 472, 407-420.
105.Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., ... & He, X. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50-58.
106.Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16(11), 1361-1368.
107.Lin, Y. P. (2008). Simulating spatial distributions, variability and uncertainty of soil arsenic by geostatistical simulations in geographic information systems.Open Environ Sci, 2, 26-33.
108.Lin, Y. P., Cheng, B. Y., Shyu, G. S., & Chang, T. K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.Environmental Pollution, 158(1), 235-244.
109.Lin, Y. P., Chu, H. J., Wu, C. F., Chang, T. K., & Chen, C. Y. (2010). Hotspot analysis of spatial environmental pollutants using kernel density estimation and geostatistical techniques. International journal of environmental research and public health, 8(1), 75-88.
110.Lin, Y. P., Lin, W. C., Li, M. Y., Chen, Y. Y., Chiang, L. C., & Wang, Y. C. (2014). Identification of spatial distributions and uncertainties of multiple heavy metal concentrations by using spatial conditioned Latin Hypercube sampling. Geoderma, 230, 9-21.
111.Lin, Y.-P.; Cheng, B.-Y.; Shyu, G.-S.; Chang, T.-K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in chunghua county, central Taiwan. Environ. Pollut., 158, 235–244.
112.Lloyd, C. D., & Atkinson, P. M. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. Computers & Geosciences, 27(8), 929-937.
113.Lombi, E., & Gerzabek, M. H. (1998). Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge. Communications in Soil Science & Plant Analysis, 29(17-18), 2545-2556.
114.Lopes JA, Rosas CF, Fernandes JB, Vanzela GA (2011) Risk quantification in grade tonnage curves and resource categorization in a lateritic Nickel deposit using geologically constrained joint conditional simulation. J Min Sci 47:166–176.
115.Luo, J., Ye, Y., Gao, Z., Wang, Y., & Wang, W. (2014). Characterization of Heavy Metal Contamination in the Habitat of Red-Crowned Crane (Grus japonensis) in Zhalong Wetland, Northeastern China. Bulletin of environmental contamination and toxicology, 1-7.
116.Lv, J., Liu, Y., Zhang, Z., & Dai, J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of hazardous materials, 261, 387-397.
117.Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., ... & Giraudoux, P. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria.Environmental Pollution, 158(6), 2294-2301.
118.Mamat, Z., Yimit, H., Ji, R. Z. A., & Eziz, M. (2014). Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China. Science of The Total Environment, 493, 1098-1111.
119.Matrosov, E. S., Woods, A. M., & Harou, J. J. (2013). Robust decision making and info-gap decision theory for water resource system planning. Journal of Hydrology, 494, 43-58.
120.McClintock, N. (2012). Assessing soil lead contamination at multiple scales in Oakland, California: Implications for urban agriculture and environmental justice. Applied Geography, 35(1), 460-473.
121.Meller, L., Cabeza, M., Pironon, S., Barbet‐Massin, M., Maiorano, L., Georges, D., & Thuiller, W. (2014). Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity and distributions, 20(3), 309-321.
122.Meybeck, M., Horowitz, A. J., & Grosbois, C. (2004). The geochemistry of Seine River Basin particulate matter: distribution of an integrated metal pollution index.Science of the total environment, 328(1), 219-236.
123.Mikkonen, N., & Moilanen, A. (2013). Identification of top priority areas and management landscapes from a national Natura 2000 network. Environmental Science & Policy, 27, 11-20.
124.Moilanen, A. and H. Kujala. Zonation spatial conservation planning framework and software v. 2.0. (2008) User manual, 136 pp.
125.Moilanen, A., & Kujala, H. (2006). The Zonation conservation planning framework and software v. 1.0: User Manual. Edita, Helsinki, Finland [online]. Website www. helsinki. fi/Bioscience/ConsPlan.
126.Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 129(3), 427-434.
127.Moilanen, A., Leathwick, J., & Elith, J. (2008). A method for spatial freshwater conservation prioritization. Freshwater Biology, 53(3), 577-592.
128.Mueller, U. A., & Ferreira, J. (2012). The U-WEDGE transformation method for multivariate geostatistical simulation. Mathematical Geosciences, 44(4), 427-448.
129.Newman M, Clements W (2008) Ecotoxicology: a comprehensive treatment. CRC Press, Boca Raton, p 852.
130.Nix, H. (1986). A biogeographic analysis of Australian elapid snakes. Atlas of Elapid Snakes of Australia. Australian Government Publishing Service, Canberra, Australia, pp.4-15.
131.Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2005). Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environmental Pollution, 138(1), 178-190.
132.Olea, R. A., & Pardo-Igúzquiza, E. (2011). Generalized bootstrap method for assessment of uncertainty in semivariogram inference. Mathematical geosciences, 43(2), 203-228.
133.O''Malley, D., & Vesselinov, V. V. (2014). Groundwater remediation using the information gap decision theory. Water Resources Research, 50(1), 246-256.
134.Overmars, K. P., De Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2), 257-270.
135.Pankakoski, E., Koivisto, I., Hyvärinen, H., Terhivuo, J., & Tähkä, K. M. (1994). Experimental accumulation of lead from soil through earthworms to common shrews. Chemosphere, 29(8), 1639-1649.
136.Pardo-Igúzquiza, E., & Olea, R. A. (2012). VARBOOT: A spatial bootstrap program for semivariogram uncertainty assessment. Computers & Geosciences, 41, 188-198.
137.Phillips, S.J., Anderson R.P., SchapireR.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.
138.Phillips, S.J., Dud´ık, M., Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada.
139.Piegat, A.; Tomaszewska, K. Decision-making under uncertainty using info-gap theory and a new multi-dimensional rdm interval arithmetic. Electrotech. Rev. 2013, 89, 71–76.
140.Pierzynski, G. M., Vance, G. F., & Sims, J. T. (2005). Soils and environmental quality. CRC press.
141.Ponder, W. F., Carter, G. A., Flemons, P., Chapman, R. R. (2001). Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology, 15: 648-657.
142.Qu, M., Li, W., & Zhang, C. (2013). Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions. Ecological Informatics, 13, 99-105.
143.Qu, M., Li, W., & Zhang, C. (2014). Spatial Distribution and Uncertainty Assessment of Potential Ecological Risks of Heavy Metals in Soil Using Sequential Gaussian Simulation. Human and Ecological Risk Assessment: An International Journal, 20(3), 764-778.
144.Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment (No. Ed. 2). McGraw-Hill, Inc..
145.Regan, H. M., Ben-Haim, Y., Langford, B., Wilson, W. G., Lundberg, P., Andelman, S. J., & Burgman, M. A. (2005). Robust decision-making under severe uncertainty for conservation management. Ecological Applications,15(4), 1471-1477.
146.Regan, H.M.; Ben-Haim, Y.; Langford, B.; Wilson, W.G.; Lundberg, P.; Andelman, S.J.; Burgman, M.A. (2005). Robust decision-making under severe uncertainty for conservation management. Ecol. Appl., 15, 1471–1477.
147.Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jimenez-Valverde, A., Ricotta, C., . . . Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography, 35(2), 211-226.
148.Rodríguez Martín, J. A., Arias, M. L., & Grau Corbí, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144(3), 1001-1012.
149.Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70(6), 1085-1096.
150.Rondon, O. (2012). Teaching aid: minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44(4), 469-504.
151.Saby, N., Arrouays, D., Boulonne, L., Jolivet, C., & Pochot, A. (2006). Geostatistical assessment of Pb in soil around Paris, France. Science of the total environment, 367(1), 212-221.
152.Shalizi, C. (2010). The bootstrap. American Scientist 90, 186–190.
153.Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., & Yu, C. (2007). Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology,52(1), 1-10.
154.Sollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80(3), 182-194.
155.Solow, A. R. (1985). Bootstrapping correlated data. Mathematical Geology, 17(7), 769-775.
156.Sposito, G., & Page, A. L. (1984). Cycling of metal ions in the soil environment. Metal ions in biological systems, 18, 287-332.
157.Stewart, R. N., & Purucker, S. T. (2011). An environmental decision support system for spatial assessment and selective remediation. Environmental Modelling & Software, 26(6), 751-760.
158.Stewart, R. R., & Possingham, H. P. (2005). Efficiency, costs and trade-offs in marine reserve system design. Environmental Modeling & Assessment, 10(3), 203-213.
159.Stockwell, D. R. B., Peterson, A. T. (2002).Controlling bias in biodiversity data. In J. M. Scott, P. J. Heglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A., Wall F. B. Samson (Eds.), Predicting species occurrences: Issues of accuracy and scale, 537-546. Washington, DC: Island Press.
160.Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China.Journal of hazardous materials, 174(1), 455-462.
161.Tajvidi, E., Monjezi, M., Asghari, O., Emery, X., & Foroughi, S. (2013). Application of joint conditional simulation to uncertainty quantification and resource classification. Arabian Journal of Geosciences, 1-9.
162.Thomas, C.D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C.,Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., Williams, S. E. (2004). Extinction risk from climate change. Nature, 427: 145-148.
163.Thompson, M. (1999). Sampling: the uncertainty that dares not speak its name.J. Environ. Monit., 1(1), 19N-21N.
164.Tichavský, P., & Yeredor, A. (2009). Fast approximate joint diagonalization incorporating weight matrices. Signal Processing, IEEE Transactions on, 57(3), 878-891.
165.Trangmar, B. B., Yost, R. S., & Uehara, G. (1985). Application of geostatistics to spatial studies of soil properties. Advances in agronomy, 38(1), 45-94.
166.Vargas-Guzman JA, Dimitrakopoulos R (2003) Computational properties of min/max autocorrelation factors. Comput Geosci 29:715–723.
167.Wackernagel, H. (2003). Multivariate geostatistics. Springer.
168.Wang, Y. C., Lei, B., Yang, S. M., & Zhang, S. (2012). [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir]. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.], 33(2), 612-617.
169.Warren D., Seifert S. (2010). Environmental niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications. doi:10.1890/10-1171.1
170.Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106:19729-19736.
171.Williams, J. N., Seo, C.,Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., & Schwartz, M. W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15, 565–576.
172.Williams, P. J. (2008). Home range and foraging habitat selection of spotted owls in the central Sierra Nevada (Doctoral dissertation, UNIVERSITY OF MINNESOTA).
173.Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Divers Distrib., 14: 763-773.
174.Wu, W., Xie, D. T., & Liu, H. B. (2009). Spatial variability of soil heavy metals in the three gorges area: multivariate and geostatistical analyses. Environmental monitoring and assessment, 157(1-4), 63-71.
175.Zeng, G., Liang, J., Guo, S., Shi, L., Xiang, L., Li, X., & Du, C. (2009). Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere, 77(3), 368-375.
176.Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental pollution,142(3), 501-511.
177.Zhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261-275.
178.Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran''s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the total environment, 398(1), 212-221.
179.Zhao, Y., Shi, X., Yu, D., Wang, H., & Sun, W. (2005). Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59(11), 1527-1535.
180.Zhao, Y., Xu, X., Huang, B., Sun, W., Shao, X., Shi, X., & Ruan, X. (2007). Using robust kriging and sequential Gaussian simulation to delineate the copper-and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 52(7), 1423-1433.
181.Zhao, Y., Xu, X., Sun, W., Huang, B., Darilek, J. L., & Shi, X. (2008). Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator co-simulation. Environmental monitoring and assessment, 138(1-3), 343-355.
182.Zhong, B., Liang, T., Wang, L., & Li, K. (2014). Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Science of The Total Environment, 490, 422-434.
183.吳先琪,吳曉芬,1997,污染土壤之危害分析,第五屆土壤污染防治研討會論文集,第119-142頁。
184.呂世宗、張嵩林、洪正中、易國禎。1984。台灣鎘、鉛污染區水質、泥土及稻米含鎘、鉛量之追蹤調查。台灣省環境保護局報告。
185.李達源, & 莊愷瑋,2003,應用地理統計界定污染場址中之污染範圍.
186.張尊國,張丕宇,2004,桃園縣蘆竹鄉中福鎘污染區土地細密調查與廠址列管計畫,桃園縣政府環境保護局、中鼎工程股份有限公司。
187.陳彥佑,2011,條件拉丁超立方採樣法結合分區策略應用於土壤重金屬污染之初步監測,國立國立臺灣大學生物環境系統工程學系碩士學位論文
188.陳賜章,2001,台南縣受重金屬污染農地土壤復育成效之追蹤,屏東科技大學環境工程與科學系碩士學位論文
189.蔡志偉,2003。以協同因子克利金法分析土壤重金屬濃度空間變異之來源,台灣大學生物環境系統工程學系碩士論文。
190.鄭百佑,2006,應用地理統計及空間尺度轉換於污染地區特徵分析與台灣地區重金屬污染場址復育驗收準則探討. 國立臺灣大學生物環境系統工程學研究所學位論文, 1-144.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊