1.[USEPA] U.S. Environmental Protection Agency. 2008. Draft US EPA’s vapor intrusion database: Preliminary evaluation of attenuation factors. Washington, D.C.: USEPA Office of Solid Waste. March.
2.Ahmed, S. H., El Sheikh, E. M., & Morsy, A. M. A. (2014). Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. Journal of environmental radioactivity, 134, 120-127.
3.Allard, P., Fairbrother, A., Hope, B. K., Hull, R. N., Johnson, M. S., Kapustka, L., ... & Sample, B. E. (2010). Recommendations for the development and application of wildlife toxicity reference values. Integrated environmental assessment and management, 6(1), 28-37.
4.Alloway, B. J., & Alloway, B. J. (Eds.). (1995). Heavy metals in soils. Springer Science & Business Media.
5.Anderson, R. P., Mart´ınez-Meyer, E. (2004).Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116, 167-179.
6.Anderson, R.P., G´omez-Laverde, M., Peterson, A.T. (2002). Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecol. Biogeogr, 11: 131-141.
7.Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.
8.Armstrong, M. (1998). Basic linear geostatistics. Springer Science & Business Media.
9.Bagchi, R., Crosby, M., Huntley, B., Hole, D.G., Butchart, S.H., Collingham, Y., Kalra, M., Rajkumar, J., Rahmani, A. Pandey, M. (2013). Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Global change biology. 19: 1236-1248.
10.Ball, I. R., & Possingham, H. P. (2000). MARXAN (V1. 8.2). Marine Reserve Design Using Spatially Explicit Annealing, a Manual.
11.Bard Y (1974) Non-linear parameter estimation. Academic Press, New York.
12.Barry, S. Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied Ecology, 43: 413-423.
13.Belskii, E. A., Lugas'' Kova, N. V., & Karfidova, A. A. (2005). Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russian Journal of Ecology, 36(5), 329-335.
14.Bengtsson, G., Nordström, S., & Rundgren, S. (1983). Population density and tissue metal concentration of lumbricids in forest soils near a brass mill.Environmental Pollution Series A, Ecological and Biological, 30(2), 87-108.
15.Ben-Haim, Y. (2001). Information-gap decision theory: decisions under severe uncertainty. Academic Pr.
16.Beyer, W. N., & Storm, G. (1995). Ecotoxicological damage from zinc smelting at Palmerton, Pennsylvania. Handbook of ecotoxicology, 509-608.
17.Bjuhr, J. (2007). Trace Metals in Soils Irrigated with Waste Water in a Periurban Area Downstream Hanoi City, Vietnam, Seminar Paper.
18.Boucher A, Dimitrakopoulos R (2009) Block-support simulation of multiple correlated variables. Math Geosci 41:215–237
19.Bowie, S. H. V., & Thornton, I. (1985). Environmental geochemistry and health. Report to the Royal Society''s British National Committee for problems of the environment. D. Reidel Publishing Company.
20.Buerger, T. T., Mirarchi, R. E., & Lisano, M. E. (1986). Effects of lead shot ingestion on captive mourning dove survivability and reproduction. The Journal of wildlife management, 1-8.
21.Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic regression. Source code for biology and medicine, 3(1), 1.
22.Busby, J.R. (1986).A biogeographical analysis of Nothofaguscunninghamii (Hook.)Oerst.in southeastern Australia. Aust. J. Ecol., 11: 1-7.
23.Cai, Q., Long, M. L., Lui, J., Zhu, M., Zhou, Q. Z., Deng, Y. D., ... & Tain, Y. J. (2008). Correlation between heavy metal concentration in cattle tissues and rearing environment. Chinese J. of Ecol, 27(02), 202-207.
24.Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511.
25.Carpenter, G., Gillison, A. N. Winter, J. (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2: 667-680.
26.Chang, T.K., Chang, N.C., Shyu, G.S., Lin, Y.P., 2000. Mapping soil mercury in Taiwan
27.Chen, Y. Y., Wang, J., Gao, W., Sun, X. J., & Xu, S. Y. (2012). Comprehensive analysis of heavy metals in soils from Baoshan District, Shanghai: a heavily industrialized area in China. Environmental Earth Sciences, 67(8), 2331-2343.
28.Chow, T. E., Gaines, K. F., Hodgson, M. E., & Wilson, M. D. (2005). Habitat and exposure modelling for ecological risk assessment: A case study for the raccoon on the Savannah River Site. Ecological Modelling, 189(1), 151-167.
29.Cid, F. D., Gatica-Sosa, C., Antón, R. I., & Caviedes-Vidal, E. (2009). Contamination of heavy metals in birds from Embalse La Florida (San Luis, Argentina). Journal of Environmental Monitoring, 11(11), 2044-2051.
30.Cook, R. R., & Auster, P. J. (2005). Use of simulated annealing for identifying essential fish habitat in a multispecies context. Conservation Biology, 19(3), 876-886.
31.Cord, A. Rödder, D. (2011) Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data? Ecological Applications, 21: 3285-3298.
32.Culbard, E. B., Thornton, I., Watt, J., Wheatley, M., Moorcroft, S., & Thompson, M. (1988). Metal contamination in British urban dusts and soils. Journal of environmental quality, 17(2), 226-234.
33.D''amore, J. J., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils. Journal of Environmental Quality, 34(5), 1707-1745.
34.David M (1988) Handbook of applied advance geostatistical ore reserve estimation. Elsevier, Amsterdam.
35.Delavenne, J. (2012). Conservation of marine habitats under multiple human uses: Methods, objectives and constraints to optimize a Marine Protected Areas network in the Eastern English Channel. Université du Littoral Côte d''Opale.
36.Delbari, M., Afrasiab, P., & Loiskandl, W. (2009). Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. Catena, 79(2), 163-169.
37.Derome, J., & Nieminen, T. (1998). Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environmental Pollution,103(2), 219-228.
38.Desbarats J. A., Dimitrakopoulos R (2000) Geostatistical simulation of regionalized pore-size distributions using Min/Max autocorrelation factors. Math Geol 32:919–942.
39.Deutsch, C. V. (2004). A statistical resampling program for correlated data: spatial_bootstrap. Centre for Computational Geostatistics Annual Report, 6.
40.Deutsch, C. V., & Journel, A. G. (1997). GSLIB: Geostatistical Software Library and User’s Guide (Applied Geostatistics)(p. 384).
41.DeVolder, P. S., Brown, S. L., Hesterberg, D., & Pandya, K. (2003). Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. Journal of environmental quality, 32(3), 851-864.
42.Dormannet, C.F., Purschke, O., Márquez, J.R.G., Lautenbach, S., Schröder, B. (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology, 89: 3371-3386
43.Eeva, T., & Lehikoinen, E. (1995). Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia, 102(3), 312-323.
44.Eeva, T., & Lehikoinen, E. (2000). Pollution: Recovery of breeding success in wild birds. Nature, 403(6772), 851-852.
45.Eeva, T., & Lehikoinen, E. (2004). Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher. Functional Ecology, 18(4), 548-553.
46.Eeva, T., Ahola, M., & Lehikoinen, E. (2009). Breeding performance of blue tits (< i> Cyanistes caeruleus) and great tits (< i> Parus major) in a heavy metal polluted area. Environmental pollution, 157(11), 3126-3131.
47.Efron, B. (1992). Bootstrap methods: another look at the jackknife (pp. 569-593). Springer New York.
48.Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677.
49.Elith, J., Graham, C. H., Anderson, R. P., Dudı´k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Sobero´n, J., Williams, S., Wisz, M. S. Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129-151
50.Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
51.Fang, S. B., Jia, X. B., Yang, X. Y., Li, Y. D., & An, S. Q. (2012). A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals. Journal of hazardous materials, 237, 290-298.
52.Fernández, M., Hamilton, H., & Kueppers, L. (2013). Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere, 4(5), art61.
53.Fox, G. A., Collins, B., Hayakawa, E., Weseloh, D. V., Ludwig, J. P., Kubiak, T. J., & Erdman, T. C. (1991). Reproductive outcomes in colonial fish-eating birds: A biomarker for developmental toxicants in Great Lakes food chains: II. Spatial variation in the occurrence and prevalence of bill defects in young Double-crested Cormorants in the Great Lakes, 1979–1987. Journal of Great Lakes Research, 17(2), 158-167.
54.Franco, C., Soares, A., & Delgado, J. (2006). Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma, 136(3), 852-864.
55.Gay, J. R., & Korre, A. (2006). A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 142(2), 227-234.
56.Gibson, L., Barrett, B., Burbidge, A. (2007). Dealing with uncertain absences in habitat modelling: a case study of a rare ground‐dwelling parrot. Diversity and Distributions, 13: 704-713.
57.Gilyazov, A. S. (1992, April). Air pollution impact on the bird communities of the Lapland Biosphere Reserve. In Aerial pollution in Kola Peninsula. Proceedings of the international workshop (pp. 383-390).
58.Goovaerts P (1993) Spatial orthogonality of the principal components computed from coregionalized variables. Math Geol 25(3):281–302
59.Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science.Geoderma, 103(1), 3-26.
60.Goovaerts, P. (2009). Medical geography: a promising field of application for geostatistics. Mathematical Geosciences, 41(3), 243-264.
61.Gordon, A., Simondson, D., White, M., Moilanen, A., & Bekessy, S. A. Integrating conservation planning and landuse planning in urban landscapes. (2009) Landscape and Urban Planning, 91(4), 183-194.
62.Gorissen, L., Snoeijs, T., Van Duyse, E., & Eens, M. (2005). Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia, 145(3), 504-509.
63.Graham, C. H., Ferrier, S., Huettman, F.; Moritz, C., Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology Evolution, 19: 497-503.
64.Graham, C. H., Moritz, C., Williams, S.E. (2006). Habitat history improves prediction of biodiversity in a rainforest fauna. Proc. Nat. Acad. Sci. USA.
65.Granadeiro, J. P., Andrade, J., & Palmeirim, J. M. (2004) Modelling the distribution of shorebirds in estuarine areas using generalised additive models. Journal of Sea Research, 52 (3), 227-240.
66.Guisan A, Graham CH, Elith J, Huettmann F and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib., 13: 332-340.
67.Guisan, A., Lehmann, A., Ferrier, S., Austin, M., OVERTON, J., Aspinall, R. Hastie, T. (2006) Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 43:386-392.
68.Guisan, A.; Edwards, T.C., Jr.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100.
69.Guo, Q.; Kelly, M.; Graham, C.H. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol. Model. 2005, 182, 75–90.
70.Ha, H., Olson, J. R., Bian, L., & Rogerson, P. A. (2014). Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environmental science & technology, 48(9), 4999-5007.
71.Hakanson, L. (1990). An operative system for environmental consequence analysis for aquatic ecosystems. Sediments: chemistry and toxicity of in-place pollutants, Lewis Publishers, Michigan, 365-390.
72.Harp, D. R., & Vesselinov, V. V. (2013). Contaminant remediation decision analysis using information gap theory. Stochastic Environmental Research and Risk Assessment, 27(1), 159-168.
73.Hayes, K. R., Barry, S. C., Hosack, G. R., & Peters, G. W. (2013). Severe uncertainty and info‐gap decision theory. Methods in Ecology and Evolution, 4(7), 601-611.
74.Hengl, T., Sierdsema, H., Radović, A., & Dilo, A. (2009). Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220(24), 3499-3511.
75.Hirzel, A.H., Hausser, J., Chessel, D.,Perrin, N.(2002). Ecological-niche factor analysis: How to compute habitat suitability maps without absence data? Ecology, 83(7): 2027-2036
76.Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013). Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193, 200-212.
77.Horn, H. L. (2011). Strategic conservation planning for terrestrial animal species in the Central Interior of British Columbia. Journal of Ecosystems and Management, 12(1).
78.Hsu, M. J., Selvaraj, K., & Agoramoorthy, G. (2006). Taiwan''s industrial heavy metal pollution threatens terrestrial biota. Environmental Pollution, 143(2), 327-334.
79.Hu, K. L., Zhang, F. R., Li, H., Huang, F., & Li, B. G. (2006). Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing. Pedosphere, 16(6), 690-698.
80.Huo, X. N., Li, H., Sun, D. F., Zhou, L. D., & Li, B. G. (2012). Combining geostatistics with Moran’s I analysis for mapping soil heavy metals in Beijing, China.International journal of environmental research and public health, 9(3), 995-1017.
81.Huo, X. N., Zhang, W. W., Sun, D. F., Li, H., Zhou, L. D., & Li, B. G. (2011). Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. International journal of environmental research and public health, 8(6), 2074-2089.
82.Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of hazardous materials, 192(2), 887-898.
83.Ives, A. R., & Cardinale, B. J. (2004). Food-web interactions govern the resistance of communities after non-random extinctions. Nature, 429(6988), 174-177.
84.Johnson, C. J., & Gillingham, M. P. (2008). Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou. Ecological Modelling, 213(2), 143-155.
85.Jones, L. H. P., & Jarvis, S. C. (1981). The fate of heavy metals. The chemistry of soil processes, 593-620.
86.Juang, K. W., Chen, Y. S., & Lee, D. Y. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229-238.
87.Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126(2), 225-233.
88.Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC press.
89.Kerry, R.; Goovaerts, P.; Haining, R.P.; Ceccato, V. Applying geostatistical analysis to crime data: Car‐related thefts in the baltic states. Geogr. Anal. 2010, 42, 53–77.
90.Kim, J., Shin, J. R., & Koo, T. H. (2009). Heavy metal distribution in some wild birds from Korea. Archives of environmental contamination and toxicology, 56(2), 317-324.
91.Kitanidis, P. K. (1983). Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water resources research, 19(4), 909-921.
92.Kooistra, L., Huijbregts, M. A., Ragas, A. M., Wehrens, R., & Leuven, R. S. (2005). Spatial variability and uncertainty in ecological risk assessment: A case study on the potential risk of cadmium for the little owl in a Dutch river flood plain. Environmental science & technology, 39(7), 2177-2187.
93.Korteling, B., Dessai, S., & Kapelan, Z. (2013). Using information-gap decision theory for water resources planning under severe uncertainty. Water resources management, 27(4), 1149-1172.
94.Kremen, C., Cameron, A., Moilanen, A., Phillips, S. J., Thomas, C. D., Beentje, H., . . . Zjhra, M. L. (2008). Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320(5873), 222-226.
95.Kuo, S. A., Heilman, P. E., & Baker, A. S. (1983). DISTRIBUTION AND FORMS OF COPPER, ZINC, CADMIUM, IRON, AND MANGANESE IN SOILS NEAR A COPPER SMELTER1. Soil Science, 135(2), 101-109.
96.Kwon, Y. T., & Lee, C. W. (1998). Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area.Science of the total environment, 214(1), 203-210.
97.Larison, J. R., Likens, G. E., Fitzpatrick, J. W., & Crock, J. G. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406(6792), 181-183.
98.Lark, R. M., & Webster, R. (2006). Geostatistical mapping of geomorphic variables in the presence of trend. Earth Surface Processes and Landforms,31(7), 862-874.
99.Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1-25.
100.Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., Julian, K., . . . Duffy, C. (2008). Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 1(2), 91-102.
101.Lee, P. F., Ding, T. S., Hsu, F. H., & Geng, S. (2004) Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, 31 (2), 307-314
102.Leharne, S., Charlesworth, D., & Chowdhry, B. (1992). A survey of metal levels in street dusts in an inner London neighbourhood. Environment International, 18(3), 263-270.
103.Levitt, J. (1980). Responses of Plants to Environmental Stresses, 2nd Edn, vol. 2. Academic Press, New York .
104.Li, W., Xu, B., Song, Q., Liu, X., Xu, J., & Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of The Total Environment, 472, 407-420.
105.Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., ... & He, X. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50-58.
106.Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16(11), 1361-1368.
107.Lin, Y. P. (2008). Simulating spatial distributions, variability and uncertainty of soil arsenic by geostatistical simulations in geographic information systems.Open Environ Sci, 2, 26-33.
108.Lin, Y. P., Cheng, B. Y., Shyu, G. S., & Chang, T. K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.Environmental Pollution, 158(1), 235-244.
109.Lin, Y. P., Chu, H. J., Wu, C. F., Chang, T. K., & Chen, C. Y. (2010). Hotspot analysis of spatial environmental pollutants using kernel density estimation and geostatistical techniques. International journal of environmental research and public health, 8(1), 75-88.
110.Lin, Y. P., Lin, W. C., Li, M. Y., Chen, Y. Y., Chiang, L. C., & Wang, Y. C. (2014). Identification of spatial distributions and uncertainties of multiple heavy metal concentrations by using spatial conditioned Latin Hypercube sampling. Geoderma, 230, 9-21.
111.Lin, Y.-P.; Cheng, B.-Y.; Shyu, G.-S.; Chang, T.-K. (2010). Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in chunghua county, central Taiwan. Environ. Pollut., 158, 235–244.
112.Lloyd, C. D., & Atkinson, P. M. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. Computers & Geosciences, 27(8), 929-937.
113.Lombi, E., & Gerzabek, M. H. (1998). Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge. Communications in Soil Science & Plant Analysis, 29(17-18), 2545-2556.
114.Lopes JA, Rosas CF, Fernandes JB, Vanzela GA (2011) Risk quantification in grade tonnage curves and resource categorization in a lateritic Nickel deposit using geologically constrained joint conditional simulation. J Min Sci 47:166–176.
115.Luo, J., Ye, Y., Gao, Z., Wang, Y., & Wang, W. (2014). Characterization of Heavy Metal Contamination in the Habitat of Red-Crowned Crane (Grus japonensis) in Zhalong Wetland, Northeastern China. Bulletin of environmental contamination and toxicology, 1-7.
116.Lv, J., Liu, Y., Zhang, Z., & Dai, J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of hazardous materials, 261, 387-397.
117.Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., ... & Giraudoux, P. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria.Environmental Pollution, 158(6), 2294-2301.
118.Mamat, Z., Yimit, H., Ji, R. Z. A., & Eziz, M. (2014). Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China. Science of The Total Environment, 493, 1098-1111.
119.Matrosov, E. S., Woods, A. M., & Harou, J. J. (2013). Robust decision making and info-gap decision theory for water resource system planning. Journal of Hydrology, 494, 43-58.
120.McClintock, N. (2012). Assessing soil lead contamination at multiple scales in Oakland, California: Implications for urban agriculture and environmental justice. Applied Geography, 35(1), 460-473.
121.Meller, L., Cabeza, M., Pironon, S., Barbet‐Massin, M., Maiorano, L., Georges, D., & Thuiller, W. (2014). Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity and distributions, 20(3), 309-321.
122.Meybeck, M., Horowitz, A. J., & Grosbois, C. (2004). The geochemistry of Seine River Basin particulate matter: distribution of an integrated metal pollution index.Science of the total environment, 328(1), 219-236.
123.Mikkonen, N., & Moilanen, A. (2013). Identification of top priority areas and management landscapes from a national Natura 2000 network. Environmental Science & Policy, 27, 11-20.
124.Moilanen, A. and H. Kujala. Zonation spatial conservation planning framework and software v. 2.0. (2008) User manual, 136 pp.
125.Moilanen, A., & Kujala, H. (2006). The Zonation conservation planning framework and software v. 1.0: User Manual. Edita, Helsinki, Finland [online]. Website www. helsinki. fi/Bioscience/ConsPlan.
126.Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 129(3), 427-434.
127.Moilanen, A., Leathwick, J., & Elith, J. (2008). A method for spatial freshwater conservation prioritization. Freshwater Biology, 53(3), 577-592.
128.Mueller, U. A., & Ferreira, J. (2012). The U-WEDGE transformation method for multivariate geostatistical simulation. Mathematical Geosciences, 44(4), 427-448.
129.Newman M, Clements W (2008) Ecotoxicology: a comprehensive treatment. CRC Press, Boca Raton, p 852.
130.Nix, H. (1986). A biogeographic analysis of Australian elapid snakes. Atlas of Elapid Snakes of Australia. Australian Government Publishing Service, Canberra, Australia, pp.4-15.
131.Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2005). Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environmental Pollution, 138(1), 178-190.
132.Olea, R. A., & Pardo-Igúzquiza, E. (2011). Generalized bootstrap method for assessment of uncertainty in semivariogram inference. Mathematical geosciences, 43(2), 203-228.
133.O''Malley, D., & Vesselinov, V. V. (2014). Groundwater remediation using the information gap decision theory. Water Resources Research, 50(1), 246-256.
134.Overmars, K. P., De Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2), 257-270.
135.Pankakoski, E., Koivisto, I., Hyvärinen, H., Terhivuo, J., & Tähkä, K. M. (1994). Experimental accumulation of lead from soil through earthworms to common shrews. Chemosphere, 29(8), 1639-1649.
136.Pardo-Igúzquiza, E., & Olea, R. A. (2012). VARBOOT: A spatial bootstrap program for semivariogram uncertainty assessment. Computers & Geosciences, 41, 188-198.
137.Phillips, S.J., Anderson R.P., SchapireR.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259.
138.Phillips, S.J., Dud´ık, M., Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada.
139.Piegat, A.; Tomaszewska, K. Decision-making under uncertainty using info-gap theory and a new multi-dimensional rdm interval arithmetic. Electrotech. Rev. 2013, 89, 71–76.
140.Pierzynski, G. M., Vance, G. F., & Sims, J. T. (2005). Soils and environmental quality. CRC press.
141.Ponder, W. F., Carter, G. A., Flemons, P., Chapman, R. R. (2001). Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology, 15: 648-657.
142.Qu, M., Li, W., & Zhang, C. (2013). Assessing the risk costs in delineating soil nickel contamination using sequential Gaussian simulation and transfer functions. Ecological Informatics, 13, 99-105.
143.Qu, M., Li, W., & Zhang, C. (2014). Spatial Distribution and Uncertainty Assessment of Potential Ecological Risks of Heavy Metals in Soil Using Sequential Gaussian Simulation. Human and Ecological Risk Assessment: An International Journal, 20(3), 764-778.
144.Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment (No. Ed. 2). McGraw-Hill, Inc..
145.Regan, H. M., Ben-Haim, Y., Langford, B., Wilson, W. G., Lundberg, P., Andelman, S. J., & Burgman, M. A. (2005). Robust decision-making under severe uncertainty for conservation management. Ecological Applications,15(4), 1471-1477.
146.Regan, H.M.; Ben-Haim, Y.; Langford, B.; Wilson, W.G.; Lundberg, P.; Andelman, S.J.; Burgman, M.A. (2005). Robust decision-making under severe uncertainty for conservation management. Ecol. Appl., 15, 1471–1477.
147.Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jimenez-Valverde, A., Ricotta, C., . . . Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography, 35(2), 211-226.
148.Rodríguez Martín, J. A., Arias, M. L., & Grau Corbí, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution, 144(3), 1001-1012.
149.Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70(6), 1085-1096.
150.Rondon, O. (2012). Teaching aid: minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44(4), 469-504.
151.Saby, N., Arrouays, D., Boulonne, L., Jolivet, C., & Pochot, A. (2006). Geostatistical assessment of Pb in soil around Paris, France. Science of the total environment, 367(1), 212-221.
152.Shalizi, C. (2010). The bootstrap. American Scientist 90, 186–190.
153.Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., & Yu, C. (2007). Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology,52(1), 1-10.
154.Sollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80(3), 182-194.
155.Solow, A. R. (1985). Bootstrapping correlated data. Mathematical Geology, 17(7), 769-775.
156.Sposito, G., & Page, A. L. (1984). Cycling of metal ions in the soil environment. Metal ions in biological systems, 18, 287-332.
157.Stewart, R. N., & Purucker, S. T. (2011). An environmental decision support system for spatial assessment and selective remediation. Environmental Modelling & Software, 26(6), 751-760.
158.Stewart, R. R., & Possingham, H. P. (2005). Efficiency, costs and trade-offs in marine reserve system design. Environmental Modeling & Assessment, 10(3), 203-213.
159.Stockwell, D. R. B., Peterson, A. T. (2002).Controlling bias in biodiversity data. In J. M. Scott, P. J. Heglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A., Wall F. B. Samson (Eds.), Predicting species occurrences: Issues of accuracy and scale, 537-546. Washington, DC: Island Press.
160.Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China.Journal of hazardous materials, 174(1), 455-462.
161.Tajvidi, E., Monjezi, M., Asghari, O., Emery, X., & Foroughi, S. (2013). Application of joint conditional simulation to uncertainty quantification and resource classification. Arabian Journal of Geosciences, 1-9.
162.Thomas, C.D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C.,Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., Williams, S. E. (2004). Extinction risk from climate change. Nature, 427: 145-148.
163.Thompson, M. (1999). Sampling: the uncertainty that dares not speak its name.J. Environ. Monit., 1(1), 19N-21N.
164.Tichavský, P., & Yeredor, A. (2009). Fast approximate joint diagonalization incorporating weight matrices. Signal Processing, IEEE Transactions on, 57(3), 878-891.
165.Trangmar, B. B., Yost, R. S., & Uehara, G. (1985). Application of geostatistics to spatial studies of soil properties. Advances in agronomy, 38(1), 45-94.
166.Vargas-Guzman JA, Dimitrakopoulos R (2003) Computational properties of min/max autocorrelation factors. Comput Geosci 29:715–723.
167.Wackernagel, H. (2003). Multivariate geostatistics. Springer.
168.Wang, Y. C., Lei, B., Yang, S. M., & Zhang, S. (2012). [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir]. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui" Huan jing ke xue" bian ji wei yuan hui.], 33(2), 612-617.
169.Warren D., Seifert S. (2010). Environmental niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications. doi:10.1890/10-1171.1
170.Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106:19729-19736.
171.Williams, J. N., Seo, C.,Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., & Schwartz, M. W. (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 15, 565–576.
172.Williams, P. J. (2008). Home range and foraging habitat selection of spotted owls in the central Sierra Nevada (Doctoral dissertation, UNIVERSITY OF MINNESOTA).
173.Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Divers Distrib., 14: 763-773.
174.Wu, W., Xie, D. T., & Liu, H. B. (2009). Spatial variability of soil heavy metals in the three gorges area: multivariate and geostatistical analyses. Environmental monitoring and assessment, 157(1-4), 63-71.
175.Zeng, G., Liang, J., Guo, S., Shi, L., Xiang, L., Li, X., & Du, C. (2009). Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere, 77(3), 368-375.
176.Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental pollution,142(3), 501-511.
177.Zhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261-275.
178.Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran''s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of the total environment, 398(1), 212-221.
179.Zhao, Y., Shi, X., Yu, D., Wang, H., & Sun, W. (2005). Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59(11), 1527-1535.
180.Zhao, Y., Xu, X., Huang, B., Sun, W., Shao, X., Shi, X., & Ruan, X. (2007). Using robust kriging and sequential Gaussian simulation to delineate the copper-and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 52(7), 1423-1433.
181.Zhao, Y., Xu, X., Sun, W., Huang, B., Darilek, J. L., & Shi, X. (2008). Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator co-simulation. Environmental monitoring and assessment, 138(1-3), 343-355.
182.Zhong, B., Liang, T., Wang, L., & Li, K. (2014). Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China. Science of The Total Environment, 490, 422-434.
183.吳先琪,吳曉芬,1997,污染土壤之危害分析,第五屆土壤污染防治研討會論文集,第119-142頁。
184.呂世宗、張嵩林、洪正中、易國禎。1984。台灣鎘、鉛污染區水質、泥土及稻米含鎘、鉛量之追蹤調查。台灣省環境保護局報告。
185.李達源, & 莊愷瑋,2003,應用地理統計界定污染場址中之污染範圍.
186.張尊國,張丕宇,2004,桃園縣蘆竹鄉中福鎘污染區土地細密調查與廠址列管計畫,桃園縣政府環境保護局、中鼎工程股份有限公司。
187.陳彥佑,2011,條件拉丁超立方採樣法結合分區策略應用於土壤重金屬污染之初步監測,國立國立臺灣大學生物環境系統工程學系碩士學位論文188.陳賜章,2001,台南縣受重金屬污染農地土壤復育成效之追蹤,屏東科技大學環境工程與科學系碩士學位論文189.蔡志偉,2003。以協同因子克利金法分析土壤重金屬濃度空間變異之來源,台灣大學生物環境系統工程學系碩士論文。190.鄭百佑,2006,應用地理統計及空間尺度轉換於污染地區特徵分析與台灣地區重金屬污染場址復育驗收準則探討. 國立臺灣大學生物環境系統工程學研究所學位論文, 1-144.