跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇益立
研究生(外文):Yu-Li Su
論文名稱:混合型最大功率點追蹤法則應用於太陽能市電併網調節系統的實現與發電效益提升之研究
論文名稱(外文):Implementation of the grid-tied power conditioning system with a hybrid maximum power point tracking method for PV energy harvested research
指導教授:江昭皚江昭皚引用關係
口試委員:謝志誠蕭瑛東艾群倪澤恩李建興黃振康
口試日期:2016-07-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:127
中文關鍵詞:逆變器擾動觀察法混合型最大功率追蹤太陽光伏系統碳減排節能植物工廠.
外文關鍵詞:Inverterperturbation and observation (P&O) methodhybrid MPPT methodphotovoltaic (PV) systemCarbon reductionenergy-savingplant factory.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了提升最大功率點追蹤控制演算法的效能,在本論文應用已經開發出新穎的、簡單且直接預測並具有降低運算負擔的方法。這些方法是根據在太陽能電池的p-n接面半導體理論所發展出來的。透過吾人開發的無需偵測輸入電流感測器的單相雙級式光伏逆變器系統架構。係採用混合型最大功率點追踪演算法則來驗證。設計出實用的併網型功率調節器4KW容量系統來佐證,
針對混合型的最大功率追蹤法則和傳統的擾動觀察法則做能量採集性能比較,實際測試結果發現,採用混合型最大功率追蹤演算法則比傳統的擾動觀察演算法透過本論文的太陽能光伏逆變器併網發電可產生更多的2.72%的能量。在本論文中,採用能量累積增強指標來針對目前市面上所使用各種不同最大功率追蹤演算法的太陽能併網型逆變器做功率累積效能比較,比較發現混合型演算法則無論在反應速度、穩定性及發電效率上都有相當的優勢。本論文研究所開發的雙級式光伏逆變器架構對於再生能源轉換應用具相當有前景,未來可用於實際太陽能躉購市電之商業用途。
此外,我們將所提出的混合型最大功率演算法則及透過本併網型功率調節器架構實際應用安裝於台大屋頂光伏系統中給密閉式植物工廠的電力使用。太陽能光伏併網系統實際在室外環境運作超過一年以上而獲得的實驗結果,明確的驗證出所開發出的混合型最大功率點追踪演算法則不僅達到反應速度快且降低擾動功率損失,而且也提升了光伏系統轉換的效能及功率增加。這些結果顯示使用太陽能光伏系統應用於密閉式植物工廠可以達到節約電力能源消耗和減少二氧化碳排放之目的。


To facilitate the efficiency of the MPPT algorithm, we have developed the new, simple, and direct-prediction method with a low calculation burden in this study. These proposed methods were developed based on the p-n junction semiconductor theory of solar cells. We develop a new single-phase two-stage PV inverter, where the input current sensors for tracking the MPP are not required. A new hybrid maximum power point tracking (MPPT) algorithm was developed to speedily achieve the MPP tracking of the PV arrays. A grid-tied PV power conditioning (PVPC) system with a capacity rating of 4 kW was constructed as a test sample system. The energy harvesting performance by using the hybrid MPPT method and the conventional perturbation and observation (P&O) method was also compared, and the test results show that the new designed PV inverter could produce 2.72% more energy than the traditional one. In this paper, we define an energy harvesting enhancement index (EHE-index) to Energy harvesting performance comparison of different commercial PV inverters equipped with various MPPT methods. The hybrid MPPT method is also good in speed, stable and efficiency in energy performance. The inverter developed in this study is pretty promising in energy production of PV systems and is ready for commercial use in the future.
Furthermore, we integrate the previously proposed direct-prediction MPP method with the perturbation and observation (P&O) method to develop a new hybrid MPPT method. The proposed MPPT method was further utilized in the PV inverters in a PV system installed on the roof of a closed plant factory at National Taiwan University. Based on experimental results obtained from an outdoor environment over one year, the hybrid MPPT method not only decreases energy loss but also increases power utilization for the PV system. These results feature the role of applying the PV system to the closed plant factory for saving energy consumption and reducing CO2 emission.


List of Illustrations viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 The renewable energy of photovoltaic modules 2
1.3 The characteristic of photovoltaic modules 4
1.4 The algorithms compared of MPPT 5
1.5 The hardware topology design 8
Chapter 2 Theoretical methods 10
2.1 Overview 10
2.2 Direct-prediction method for the maximum power point estimation 11
Chapter 3 Experimental procedures 21
3.1 Overview 21
3.2 The topology of the proposed PVPC system 22
3.3 The mathematical basis of the designed inverter 25
3.3.1 The Direct Prediction Method (DPM) for MPP 26
3.3.2 The Duty Ratio Control of the Inverter 29
3.4 The proposed hybrid maximum power point tracking (MPPT) method 40
3.5 Hardware Implementation 56
Chapter 4 Results and discussion 62
4.1 Overview 62
4.2 Basic performance of proposed hybrid MPPT algorithm 63
4.2.1 Performance evaluation under various irradiation conditions 63
4.2.2 Performance evaluation for different fill factors (FFs) 66
4.2.3 Performance evaluation of output power tracking 69
4.2.4 Performance evaluation of dynamically radiation change 71
4.2.5 Performance evaluation of tracking capability 72
4.2.6 Energy harvesting performance comparison of the commercial two-stage inverters equipped with the proposed hybrid MPPT algorithm and other MPPT methods 75
4.3 Case Study- closed plant factory 82
4.3.1 Benefit evaluation of using PV system in the closed plant factory 82
4.3.2 Experimental procedures using PV system in the closed plant factory 84
4.3.3 Performance evaluation of installing a PV system in the closed plant factory 90
4.3.4 Conclusions of installing a PV system in the closed plant factory 103
Chapter 5 Conclusions and possible future works 106
References 112
Publication List 123


Araki K, Akisawa A, Kumagai I, Nagai N. Analysis of shadow by HCPV panels for agriculture applications. In. Proceeding of 35th IEEE Photovoltaic Specialists Conference; 20–25 June 2010, Honolulu, Hawaii, U.S.A. p. 2994–2997.
Agrawal B, Tiwari GN. Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl Energy 2010;87:417–426.
Abu Eldahaba YE, Saadb NH, Zekryc A. Enhancing the maximum power point tracking techniques for photovoltaic systems. Renew Sust Energ Rev 2014;40:505–514.
Borowy, B. S. and Z. M. Salameh. 1996. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 11(2): 367–375.
Bianconi E, Calvente J, Giral R, Mamarelis E, Petrone G, Ramos-Paja CA, Spagnuolo G, Vitelli M. A Fast Current-Based MPPT Technique Employing Sliding Mode Control. IEEE Trans Ind Electron 2013;60: 1168–1178.
Bae, H. S., J. H. Park, B. H. Cho, and G. J. Yu. 2007. New MPPT control strategy for two-stage grid-connected photovoltaic power conditioning system. J. Power Electron. 7(2): 174–180.
Beccali M, Finocchiaro P, Nocke B. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate. Sol Energy 2009;83: 1828–1846.
Bose, B. K., P. M. Szczeny, and R. L. Steigerwald. 1985. Microcomputer control of a residential photovoltaic power conditioning system. IEEE Trans. Ind. Appl. IA-21(5): 1182–1191.
Close, J., J. Ip, and K. H. Lam. 2006. Water recycling with PV-powered UV-LED disinfection. Renew. Energy 31(11): 1657–1664.
Chiu HJ, Lo YK, Yang CY, Cheng SJ, Huang CM, Chuang CC, Kuo MC, Huang YM, Jean YB, Huang YC. A Module-Integrated Isolated Solar Microinverter. IEEE Trans Ind Electron 2013;60:781–788.
Chel, A. and G. Kaushik. 2011. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 31(1): 91–118.
Chowdhury, S. R. and H. Saha. 2010. Maximum power point tracking of partially shaded solar photovoltaic arrays. Sol. Energy Mater. Sol. Cells 94(9): 1441–1447.
Courant, R. 1943. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49(1): 1–23.
Curtright, E. and J. Apt. 2008. The character of power output from utility-scale photovoltaic systems. Prog. Photovoltaics 16(3): 241–247.
Chang CC, Chen CC, Mccarl B. Evaluating the economic impacts of crop yield change and sea level rise induced by climate change on Taiwan''s agricultural sector. Agric Econ 2012;43: 205–214.
Chang CC. The potential impact of climate change on Taiwan’s agriculture. Agric Econ 2002;27: 51–64.
Chang YW, Lin TS, Wang JC, Chou JJ, Liao KC, Jiang JA. The effect of temperature distribution on the vertical cultivation in plant factories with a WSN-based environmental monitoring system. In. Proceeding of 2011 International Conference on Agricultural and Natural Resources Engineering (ANRE 2011); 20–25 June 2011, Singapore, p. 234–240.
CO2 electricity emissions factor: Bureau of Energy, Ministry of Economic Affairs, Taiwan. Available at: www.taipower.com.tw.
Dincer, I. and M. A. Rosen. 1998. A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res. 22(15): 1305–1321.
Dincer, I. 1999. Environmental impacts of energy. Energy Policy 27(14): 845–854.
Díaz, P. and C. A. Arias, M. Gomez-Gonzalez, D. Sandoval, and R. Lobato. 2011. Solar home system electrification in dispersed rural areas: a 10-year experience in Jujuy, Argentina. Prog. Photovoltaics 21(3): 297–307.
Díaz-González, F., A. Sumper, O. Gomis-Bellmunt, and F. D. Bianchi. 2013. Energy management of flywheel-based energy storage device for wind power smoothing. Appl. Energy 110: 207–219.
De Brito MAG, L. Galotto, Sampaio LP, de Azevedo e Melo G, Canesin, CA. Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Trans Ind Electron 2013;60: 1156–1167.
DKE German Commission. List of standards, drafts and specifications specially developed for PV applications. August 2012, 9 pages.
Ekren, O. and B. Y. Ekren. 2010. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Appl. Energy 87(2): 592–598.
Enslin, J. H. R., M. S. Wolf, D. B. Snyman, and W. Sweigers. 1997. Integrated photovoltaic maximum power point tracking converter. IEEE Trans. Ind. Electron. 44(6): 769–773.
Extreme events and disasters are the biggest threat to Taiwan: Typhoon Morakot, Booklet 2009. Taipei: Environmental Protection Administration Executive Yuan 2009.
Femia N, Petrone G, Spagnuolo G, Vitelli M. A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Trans Ind Electron 2009;56: 4473–4482.
Fang W, Jao RC. A Review on Artificial Lighting of Tissue Cultures and Transplants. In. Proceeding of International symposium on Transplant production in closed system for solving the global issues on environmental conservation, food, resources and energy; 28 February – 2 March 2000, Chiba, Japan.
Fragaki, A. and T. Markvart. 2008. Stand-alone PV system design: Results using a new sizing approach. Renew. Energy 33(1): 162–167.
Gow, J. A. and C. D. Manning. 2000. Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources. Proc. Inst. Electr. Eng.–Electr. Power Appl. 147(1): 15–20.
Gude, V. G., N. Nirmalakhandan, and S. Deng. 2011. Desalination using solar energy: Towards sustainability. Energy 36(1): 78–85.
Gustavsson, L., P. Börjesson, B. Johansson, and P. Svenningsson. 1995. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy 20(11): 1097–1113.
Hiyama, T., S. Kouzuma, and T. Imakubo. 1995. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans. Energy Convers. 10(2): 360–367.
Hiyama, T. and K. Kitabayashi. 1997. Neural network based estimation of maximum power generation from PV module using environmental information. IEEE Trans. Energy Convers. 12(3): 241–247.
Hussein, K. H., I. Muta, T. Hoshino, and M. Osakada. 1995. Maximum photovoltaic power tracking: An algorithm for rapidly changing atmosphere conditions. Proc. Inst. Elect. Eng.–Gener., Transmiss., Distrib. 142(1): 59–64.
Hua, C. C., J. R. Lin, and C. M. Shen. 1998. Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Trans. Ind. Electron. 45(1): 99–107.
Ishaque K, Salam Z, Amjad M, Mekhilef S. An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation. IEEE Trans Power Electron 2012;27:3627–3638.
Jiang, J. A., Y. T. Liang, J. C. Wang, Y. L. Su, K. C. Kuo, and J. C. Shieh. 2012b. A novel analytical model for determining the maximum power point of thin film photovoltaic module. Prog. Photovoltaics DOI: 10.1002/pip.2263.
Katti, P. K. and M. K. Khedkar. 2007. Alternative energy facilities based on site matching and generation unit sizing for remote area power supply. Renew. Energy 32(8): 1346–1366.
Kwon, J. M., K. H. Nam, and B. H. Kwon. 2006. Photovoltaic power conditioning system with line connection. IEEE Trans. Ind. Electron. 53(4): 1048–1054.
Kwon J.M., Kwon B.H., and Nam K.H. Grid-Connected Photovoltaic Multistring PCS With PV Current Variation Reduction Control. IEEE Trans. Ind. Electron. 2009, vol. 56, no. 11, pp. 4381 - 4388.
Kaabeche, A., M. Belhamel, and R. Ibtiouen. 2011. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 36(2): 1214–1222.
Kaldellis, J. K., E. Kondili, and A. Filios. 2006. Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost. Appl. Energy 83(12): 1384–1403.
Kanchan, V. and G. N. Tiwari. 2012. Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system. Appl. Energy 96: 409–416.
Karekezi, S. and W. Kithyoma. 2002. Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa? Energy Policy 30(11–12): 1071–1086.
Kaushika, N. D. and A. K. Rai. 2007. An investigation of mismatch losses in solar photovoltaic cell networks. Energy 32(5): 755–759.
Keith, D. W., J. F. DeCarolis, D. C. Denkenberger, D. H. Lenschow, S. L. Malyshev, S. N. Pacala, and P. J. Rasch. 2004. The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. U.S.A. 101(46): 16115–16120.
Kern, E. C., E. M. Gulachenski, and G. A. Kern. 1989. Cloud effects on distributed photovoltaic generation: slow transients at the Gardner, Masachusetts photovoltaic experiment. IEEE Trans. Energy Convers. 4(2): 184–190.
King, D. L. 1996. Photovoltaic module and array performance characterization methods for all system operating conditions. In "Proc. NREL/SNL Photovoltaics Program Review Meeting'', 347–368. Lakewood, CO, U.S.A.
King, D. L., J. A. Kratochvil, and W. E. Boyson. 1997. Temperature coefficients for PV modules and arrays: measurement methods, difficulties, and results. In "Proc. 26th IEEE Photovoltaic Specialists Conference'', 1183–1186. Anaheim, CA, U.S.A.: IEEE.
King, D. L., J. A. Kratochvil, W. E. Boyson, and W. Bower. 1998. Field experience with a new performance characterization procedure for photovoltaic arrays. In "Proc. 2nd world conference and exhibition on photovoltaic solar energy conversion'', 1947–1952. Vienna, Austria.
King, D. L., W. E. Boyson, and J. A. Kratochvil. 2004. Photovoltaic array performance model. Sandia National Laboratories Report No. SAND2004-3535.
Kobayashi, K., I. Takano, and Y. Sawada. 2006. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Sol. Energy Mater. Sol. Cells 90(18–19): 2975–2988.
Kuo, Y. C., T. J. Liang, and J. F. Chen. 2001. Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron. 48(3): 594–601.
Lin YC, Huang SL, Budd WW. Assessing the environmental impacts of high-altitude agriculture in Taiwan: A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecol Indic 2013;32: 42–50.
Lyden S, Haque ME. Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis. Renew Sust Energ Rev 2015;52: 1504–1518.
Lau, K. Y., M. F. M. Yousof, S. N. M. Arshad, M. Anwari, and A. H. M. Yatim. 2010. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 35(8): 3245–3255.
Liao, C. C. 2010. Genetic k-means algorithm based RBF network for photovoltaic MPP prediction. Energy 35(2): 529–536.
Li, X. W., X. S. Zhang, and S. Quan. 2011. Single-stage and double-stage photovoltaic driven regeneration for liquid desiccant cooling system. Appl. Energy 88(12): 4908–4917.
Lin, Y. C., S. L. Huang, and W. W. Budd. 2013. Assessing the environmental impacts of high-altitude agriculture in Taiwan: A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecol. Indic. 32: 42–50.
Lobato, J., A. G. del Campo, F. J. Fernández, P. Cañizares, and M. A. Rodrigo. 2013. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Appl. Energy 110: 220–226.
Logan, D. L. 2006. A first course in the finite element method, 4th ed. Andover: Thomson Learning.
Lujano-Rojas, J. M., R. Dufo-López, and J. L. Bernal-Agustín. 2012. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty. Appl. Energy 93: 404–412.
Miyatake M, Veerachary M, Toriumi F, Fujii N, Ko H. Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach. IEEE Trans Aerospace and Electronic Systems 2011;47:367–380.
Mäki, A., S. Valkealahti, and J. Leppäaho. 2012. Operation of series-connected silicon-based photovoltaic modules under partial shading conditions. Prog. Photovoltaics 20(3): 298–309.
Marano, V., G. Rizzo, and F. A. Tiano. 2012. Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl. Energy 97: 849–859.
Marcos, J., L. Marroyo, E. Lorenzo, D. Alvira, and E. Izco. 2011. Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model. Prog. Photovoltaics 19(2): 218–227.
Martin, N. and J. M. Ruiz. 2001. Calculation of the PV modules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 70(1): 25–38.
Mattei, M., G. Notton, C. Cristofari, M. Muselli, and P. Poggi. 2006. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 31(4): 553–567.
McCluney, R. 1994. Introduction to Radiometry and Photometry. Artech House: Boston-London.
MOEABOE, 2011. CO2 electricity emissions factor 2011: Bureau of Energy, Ministry of Economic Affairs, Taiwan. Available at: www.taipower.com.tw. Accessed 20 May 2013.
Mondol, J. D., Y. G. Yohanis, M. Smyth, and B. Norton. 2005. Long-term validated simulation of a building integrated photovoltaic system. Sol. Energy 78(2): 163–176.
Mondol, J. D., Y. G. Yohanis, and B. Norton. 2007a. Comparison of measured and predicted long term performance of a grid connected photovoltaic system. Energy Conv. Manag. 48(4): 1065–1080.
Mondol, J. D., Y. G. Yohanis, and B. Norton. 2007b. The effect of low insolation conditions and inverter oversizing on the long-term performance of a grid-connected photovoltaic system. Prog. Photovoltaics 15(4): 353–368.
Muñoz, J., F. Martínez-Moreno, and E. Lorenzo. 2011. On-site characterisation and energy efficiency of grid-connected PV inverters. Prog. Photovoltaics 19(2): 192–201.
Münster, M. and H. Lund. 2009. Use of waste for heat, electricity, and transport — challenges when performing energy system analysis. Energy 34(5): 636–644.
Mutoh, N., M. Ohno, and T. Inoue. 2006. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems. IEEE Trans. Ind. Electron. 53(4): 1055–1065.
Nabulsi A, Dhaouadi R. Efficiency Optimization of a DSP-Based Standalone PV System Using Fuzzy Logic and Dual-MPPT Control. IEEE Trans Ind Informat 2012;8: 573–584.
Nema, P., R. K. Nema, and S. Rangnekar. 2010. Minimization of green house gases emission by using hybrid energy system for telephony base station site application. Renew. Sust. Energ. Rev. 14(6): 1635–1639.
Nayak, S. and G. N. Tiwari. 2008. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy Build. 40(11): 2015–2021.
Neef, H. J. 2009. International overview of hydrogen and fuel cell research. Energy 34(3): 327–333.
Østergaard, P. A. 2009. Reviewing optimisation criteria for energy systems analyses of renewable energy integration. Energy 34(9): 1236–1245.
Quadrelli, R. and S. Peterson. 2007. The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 35(11): 5938–5952.
Park, K. E., G. H. Kang, H. I. Kim, G. J. Yu, and J. T. Kim. 2010. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy 35(6): 2681–2687.
Pelet, X., D. Favrat, and G. Leyland. 2005. Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions. Int. J. Therm. Sci. 44(12): 1180–1189.
Pillai, I. R. and R. Banerjee. 2009. Renewable energy in India: Status and potential. Energy 34(8): 970–980.
Petrone G, Spagnuolo G, Vitelli M. A Multivariable Perturb-and-Observe Maximum Power Point Tracking Technique Applied to a Single-Stage Photovoltaic Inverter. IEEE Trans Ind Electron 2011;58: 76–84.
Rauschenbach, H. S. 1980. Solar cell array design handbook: The Principles and Technology of Photovoltaic Energy Conversion. New York: Van Nostrand Reinhold Co.
Reisi AR, Moradi MH, Jamasb S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew Sust Energ Rev 2013;19: 433–443.
Salas, E. Olıas, A. Lazaro, and A. Barrado, “Evaluation of a new maximum power point tracker (MPPT) applied to the photovoltaic stand-alone systems,” Solar Energy Materials and Solar Cells, vol. 87, no. 1-4, pp. 807–815, May 2005.
Santarelli, M., M. Calì, and S. Macagno. 2004. Design and analysis of stand-alone hydrogen energy systems with different renewable sources. Int. J. Hydrog. Energy 29(15): 1571–1586.
Sopitpan, S., P. Changmuang, and S. Panyakeow. 2001. Monitoring and data analysis of a PV system connected to a grid for home applications. Sol. Energy Mater. Sol. Cells 67(1–4): 481–490.
Shoeman, J. J. and J. D. van Wyk. 1982. A simplified maximal power controller for terrestrial photovoltaic panel arrays. In "Proc. 13th IEEE Power Electronics Specialists Conference'', 361–367. Cambridge, MA, U.S.A.: IEEE.
Sullivan, C. R. and M. J. Powers. 1993. A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle. In "Proc. 24th IEEE Power Electronics Specialists Conference'', 574–580. Seattle, WA, U.S.A.: IEEE.
Sera, D., T. Kerekes, R. Teodorescu, and F. Blaabjerg. 2006. Improved MPPT method for rapidly changing environmental conditions. In "Proc. 2006 IEEE International Symposium on Industrial Electronics (ISIE 2006)'', 1420–1425. Montréal, Canada: IEEE.
Saravanan S, Ramesh Babu N. Maximum power point tracking algorithms for photovoltaic system – A review. Renew Sust Energ Rev 2016;57: 192–204.
Sakaki, K. and K. Yamada. 1997. CO2 mitigation by new energy systems. Energy Conv. Manag. 38: S655–S660.
Sastry, O. S., S. Saurabh, S. K. Shil, P. C. Pant, R. Kumar, A. Kumar, and B. Bandopadhyay. 2010. Performance analysis of field exposed single crystalline silicon modules. Sol. Energy Mater. Sol. Cells 94(9): 1463–1468.
Scarpa, V. V. R., S. Buso, and G. Spiazzi. 2009. Low-complexity MPPT technique exploiting the PV Module MPP locus characterization. IEEE Trans. Ind. Electron. 56(5): 1531–1538.
Schaub, P., A. Mermoud, and O. Guisan. 1994. Evaluation of the different losses involved in two photovoltaic systems. In "Proc. 12th European Photovoltaic Solar Energy Conference (12th EU PVSEC)'', 859–862. Amsterdam, the Netherlands.
Shahsavar, A., M. Salmanzadeh, M. Ameri, and P. Talebizadeh. 2011. Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels. Energy Build. 43(9): 2219–2226.
Sharifi Asl, S. M., S. Rowshanzamir, and M. H. Eikani. 2010. Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell. Energy 35(4): 1633–1646.
Sjerps-Koomen, E. A., E. A. Alsema, and W. C. Turkenburg. 1996. A simple model for PV module reflection losses under field conditions. Sol. Energy 57(6): 421–432.
Singh, G. K. 2011. Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation. Energy 36(9): 5621–5631.
Skoplaki, E. and J. A. Palyvos. 2009. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 34(1): 23–29.
Sun, L., L. Lu, H. Yang. 2012. Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl. Energy 90(1): 233–240.
Swanson, R. M. 2006. A vision for crystalline silicon photovoltaics. Prog. Photovoltaics 14(5): 443–453.
Sze, S. M. 1981. Physics of semiconductor devices, 2nd ed. New York: Wiley.
Sze, S. M. And K. K. Ng. 2006. Physics of semiconductor devices, 3rd ed. New York: Wiley.
Sze SM, Ng KK. Physics of semiconductor devices, third ed. New York: Wiley; 2006.
Taiwan power company, Taiwan. Available at: www.taipower.com.tw.
Takigawa, K., N. Okada, N. Kuwabara, A. Kitamura, and F. Yamamoto. 2003. Development and performance test of smart power conditioner for value-added PV application. Sol. Energy Mater. Sol. Cells 75(3–4): 547–555.
Tang, R. S. and Y. M. Yu. 2010. Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications. Sol. Energy 84(9): 1666–1675.
Thongpron, J., K. Kirtikara, and C. Jivacate. 2006. A method for the determination of dynamic resistance of photovoltaic modules under illumination. Sol. Energy Mater. Sol. Cells 90(18–19): 3078–3084.
Tina, G. M., M. Rosa-Clot, P. Rosa-Clot, and P. F. Scandura. 2012. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 39(1): 17–26.
Tiwari, A. and M. S. Sodha. 2006. Performance evaluation of a solar PV/T system: an experimental validation. Sol. Energy 80(7): 751–759.
Tomson, T. 2008. Discrete two-positional tracking of solar collectors. Renew. Energy 33(3): 400–405.
Verma D, Nema S, Shandilya AM, Dash SK. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renew Sust Energ Rev 2016;54:1034–1038.
Veerchary, M., T. Senjyu, and K. Uezato. 2003. Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter- supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4): 749–758.
Wang, J. C., Y. L. Su, J. C. Shieh, and J. A. Jiang. 2011a. High-accuracy maximum power point estimation for photovoltaic arrays. Sol. Energy Mater. Sol. Cells 95(3): 843–851.
Wang, J. C., J. .C Shieh, Y. L. Su, K. C. Kuo, Y. W. Chang, Y. T. Liang, J. J. Chou, K. C. Liao, and J. A. Jiang. 2011b. A novel method for the determination of dynamic resistance for photovoltaic modules. Energy 36(10): 5968–5974.
Wang, S. H., S. L. Huang, and W. W. Budd. 2012. Resilience analysis of the interaction of between typhoons and land use change. Landsc. Urban Plan. 106(4): 303–315.
Wasynzczuk, O. 1983. Dynamic behavior of a class of photovoltaic power systems. IEEE Trans. Power App. Syst. PAS-102(9): 3031–3037.
Wu, T. F., C. H. Chang, and Y. H. Chen. 2000. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications. IEEE Trans. Ind. Electron. 47(2): 287–296.
Wang, Y., W. Tian, J. Ren, L. Zhu, and Q. Wang. 2006. Influence of a building’s integrated-photovoltaics on heating and cooling loads. Appl. Energy 83(9): 989–1003.
Wang, C. and R. G. Prinn. 2010. Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 10(4): 2053–2061.
Yang B, Li W, Zhao Y, He X. Design and Analysis of a Grid-Connected Photovoltaic Power System. IEEE Trans Power Electron 2010;5: 992–1000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top