|
[1] K. Okada et al., “A full 4-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with low-power analog and digital baseband circuitry,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2012, pp. 218–220. [2] T. Tsukizawa et al., “A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE802.11ad with built-in self calibration for mobile applications,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2013, pp. 230–231. [3] S.-W.M. Chen and R.W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006. [4] J. Yang, T.L. Naing, and R.W. Brodersen, “A 1 GS/s 6 Bit 6.7 mW successive approximation ADC using asynchronous processing,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1469–1478, Aug. 2010. [5] T. Jiang et al, “A single-channel, 1.25-GS/s, 6-bit, 6.08-mW asynchronous successive approximation ADC with improved feedback delay in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2444–2453, Oct. 2012. [6] L. Kull et al, “A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3049–3058, Dec. 2013. [7] E. Alpman et al., “A 1.1V 50mW 2.5GS/s 7b time-interleaved C-2C SAR ADC in 45nm LP digital CMOS,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2009, pp. 76–77. [8] P.J.A. Harpe et al., “A 0.47–1.6 mW 5-bit 0.5–1 GS/s time-interleaved SAR ADC for low-power UWB radios,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1594–1602, Jul. 2012. [9] K. Doris et al., “A 480 mW 2.6 GS/s 10b time-interleaved ADC With 48.5 dB SNDR up to nyquist in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2821–2833, Dec. 2011. [10] D. Stepanovic and B. Nikolic, “A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 971–982, Apr. 2013. [11] N. Kurosawa et al., “Explicit analysis of channel mismatch effects in time-interleaved ADC systems” IEEE Trans. Circuits Syst.Ⅰ, Fundam. Theory Appl., vol.48, no.3, pp.261–271, Mar. 2001. [12] M. El-Chammas and B. Murmann, “A 12 GS/s 81-mW 5-bit time-in-terleaved flash ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838–847, Apr. 2011. [13] C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848–858, Apr. 2011. [14] S. Lee et al., “A 1 GS/s 10b 18.9 mW time-interleaved SAR ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2846–2856, Dec. 2014. [15] N. Le Dortz et al., “A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2014, pp. 386‒388. [16] C.-H. Tsai, “A single-channel 6-bit 800MS/s two-step SAR ADC”, Master Thesis, Graduate Institute of Electronics Engineering, College of Electrical Engineering & Computer Science, National Taiwan University, Nov. 2014. [17] I.-N. Ku et al., “A 40-mW 7-bit 2.2-GS/s time-interleaved subranging CMOS ADC for low-power gigabit wireless communications,” IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1854–1865, Aug. 2012. [18] S.K. Gupta, M.A. Inerfield, and J. Wang, “A 1-GS/s 11-bit ADC with 55-dB SNDR, 250-mW power realized by a high bandwidth scalable time-interleaved architecture,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2650–2657, Dec. 2006. [19] C.-C. Hsu et al., “An 11b 800MS/s time-interleaved ADC with digital background calibration,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2007, pp. 464–465. [20] S. Louwsma et al., “A 1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13 μm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no.4, pp. 778–786, Apr. 2008. [21] A. Varzaghani et al., “A 10.3-GS/s, 6-bit flash ADC for 10G ethernet applications,” IEEE J. Solid-State Circuits, vol. 48, no.12, pp. 3038–3048, Dec. 2013. [22] H. Wei et al., “An 8 bit 4GS/s120 mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 49, no.8, pp. 1751–1761, Aug. 2014. [23] Y. Duan and E. Alon, “A 12.8 GS/s time-interleaved ADC with 25 GHz effective resolution bandwidth and 4.6 ENOB,” IEEE J. Solid-State Circuits, vol. 49, no.8, pp. 1725–1738, Aug. 2014. [24] P. Schvan et al., “A 24GS/s 6b ADC in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2008, pp. 544–545. [25] H.-Y. Tai et al., “A 6-bit 1-GS/s two-step SAR ADC in 40-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 5, pp.339–343, May 2014. [26] T.-Y. Tang, T.-H. Tsai and K. Chen et al., “Timing mismatch background calibration for time-interleaved ADCs,” in TENCON 2012 - 2012 IEEE Region 10 Conference, Nov. 2012, pp. 1–4. [27] B.P. Ginsburg et al., “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739–747, Apr. 2007. [28] Y. Zhu et al., “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol.45, no.6, pp.1111–1121, Jun. 2010. [29] C.-C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol.45, no.4, pp.731–740, Apr. 2010. [30] B. Wicht, T. Nirschl, D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol.39, no.7, pp.1148–1158, Jul. 2004. [31] S. Louwsma, E.V. Tuijl and B. Nauta, Time-interleaved analog-to-digital converters. New York: Springer, 2011, ch.2. [32] W. C. Black, JR., and D. A. Hodges, “Time interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. SC-15, no.6, pp. 1022–1029, Dec. 1980. [33] K. Poulton, J.J. Corcoran, and T. Hornak. “A 1-GHz 6-bit ADC system,” IEEE J. Solid-State Circuits, vol. SC-22, no.6, pp. 962–970, Dec. 1987. [34] B.-R.-S. Sung et al., “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 281–284. [35] H. Lee et al., “A 6-bit 2.5-GS/s time-interleaved analog-to-digital converter using resistor-array sharing digital-to-analog converter,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., pp. 2371–2383, Nov. 2014. [36] S. Kundu et al., “A 1.2 V 2.64 GS/s 8 bit 39 mW skew-tolerant time-interleaved SAR ADC in 40 nm digital LP CMOS for 60 GHz WLAN,” IEEE Trans. Circuits Syst.Ⅰ, Reg. Papers, vol.62, no.8, pp.1929–1939, Aug. 2015. [37] R. Reeder and R. Ramachandran. “Wideband A/D converter front-end design considerations —When to use a double transformer configuration.” Analog Dialogue 40-3. pp. 19-22. 2006. [38] Mini-Circuits, “Surface mount RF transformer JTX-4-10T+,” http://www.minicircuits.com/pdfs/JTX-4-10T+.pdf [39] Mini-Circuits, “Surface mount RF transformer TCM4-14+,” http://www.minicircuits.com/pdfs/TCM4-14+.pdf [40] Mini-Circuits, “Surface mount RF transformer TCM4-452X+,” http://www.minicircuits.com/pdfs/TCM4-452X+.pdf [41] Tektronix, “11 GHz differential pulse splitter PSPL5320B datasheet,” http://www.tek.com/sites/tek.com/files/media/media/resources/PSPL5320B-Datasheet-0.pdf [42] C.-H. Chan et al., “A 6 b 5 GS/s 4 interleaved 3 b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol.51, no.2, pp.365–377, Feb. 2016.
|