跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳星羽
研究生(外文):Hsing-Yu Chen
論文名稱:V頻段使用變壓器耦合之次諧波正交混頻器及緩衝放大器
論文名稱(外文):V-band Subharmonic IQ Mixer Using Transformer Coupling and Buffer Amplifier
指導教授:盧信嘉
口試委員:林坤佑蔡政翰黃天偉
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:次諧波混頻器正交混頻器變壓器耦合交叉耦合對主動負載轉阻放大器單平衡式混頻器吉伯特混頻器
外文關鍵詞:sub-harmonic mixerIQ mixertransformer coupledcross-couplertransimpedance amplifiersingle balanced mixerGilbert cell mixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究V頻段射頻通訊系統接收路徑上之緩衝放大器及降頻次諧波混頻器,本論文首先介紹緩衝放大器設計原理,簡介不同設計目的之緩衝放大器拓樸的選擇。再來介紹不同混頻器之功能與架構,包含主動式與被動式、單平衡式及雙平衡式。最後介紹不同次諧波混頻器之功能與架構,亦包含主動式及被動式,其中以次諧波吉伯特混頻器較被廣泛運用。
本論文提出一個兩級串級放大器架構之緩衝放大器,使用疊接放大器串接共源極放大器,可順利實現一低功耗、高線性度、低雜訊之緩衝放大器。之後提出一改良之單平衡式次諧波混頻器,利用倍頻器將本地震盪端訊號倍頻,並加上主動負載交叉耦合對來提升轉換增益,並使用變壓器耦合提高電路線性度。最後提出一改良之次諧波吉伯特混頻器,同樣利用變壓器耦合提高電路線性度,並於輸出端加入轉阻放大器,使混頻器對下一級電路輸入阻抗較不敏感,可解決電路震盪的可能性。
本論文緩衝放大器利用TSMC 40nm CMOS製程,晶片尺寸為 ,量測結果增益壓縮2 dB頻寬為51.9 GHz至62 GHz,小訊號增益為9.92 dB,雜訊指數最低於頻率59 GHz時為4.8 dB,輸入P1dB為-13 dBm,IIP3為-0.5 dBm,直流功耗為11.23 mW,與模擬結果相比增益及中心頻率點不如預期,其原因為電晶體模型於高頻時需做修正,於本論文第6章會詳細介紹。
使用倍頻器之次諧波正交混頻器利用TSMC 90 nm CMOS製程,晶片尺寸為 ,量測結果轉換增益為-20.5 dB,輸入P1dB為1 dBm,本地震盪功耗為11 dBm,直流功耗為13.92 mW,與模擬結果相比轉換增益差異較大,其原因於本論文第6章會詳細介紹。使用變壓器耦合之正交混頻器利用TSMC 40nm CMOS製程,晶片尺寸為 ,其晶片還未製作完畢,模擬結果轉換增益為-13 dB,輸入P1dB為-5 dBm,IIP3為4 dBm,本地震盪功耗為7 dBm,中頻增益降1 dB頻寬為0.01 GHz至1 GHz,直流功耗為26.62 mW。


In this thesis, a buffer amplifier and two subharmonic down-conversion mixers for V-band communication receiver system are designed and fabricated. This thesis starts from introducing buffer amplifier design principles. Then, this thesis introduces different mixer topologies and features, including active, passive, single balanced and double balanced mixers. Finally, this thesis introduces different sub-harmonic mixer topologies and features. Among all the sub-harmonic mixer topology, the sub-harmonic Gilbert cell mixer is the most widely used.
This thesis proposes a two stage cascade amplifier using cascode amplifier with common-source amplifier, and successfully implement a low-power, high linearity and low noise buffer amplifier. Then, we propose an improved single balanced harmonic mixer. This mixer uses frequency multiplier to double local oscillation frequency, active load of cross-coupled to enhance conversion gain, and transformer to improve linearity. Finally, this thesis proposes an improved sub-harmonic Gilbert cell mixer, also using transformer to improve linearity, and adding transimpedance amplifier at output stage to reduce sensitivity to next stage’s impedance, and avoid circuit oscillation.
In this thesis, buffer amplifier is developed in TSMC 40 nm CMOS technology. The measured 2dB bandwidth is 51.9GHz to 52GHz, and small signal gain is 9.9dB. The minimum noise figure is 4.8dB at 59GHz, input P1dB is -13dBm, IIP3 is -0.5 dBm, and DC power consumption is 11.23mW. The measured results comparing with simulated results have some deviation, due to in-accurate transistor model at high frequency.
The sub-harmonic IQ mixer is developed in TSMC 90 nm CMOS technology. The measured conversion gain is -20.5dB, the input P1dB is 1dBm, and the DC power consumption is 13.92mW. The measured results comparing with simulated results have some deviation, and the reason is explained in Chapter 6. Finally, the sub-harmonic IQ mixer using transformer is developed in TSMC 40 nm CMOS technology. This chip is still under fabrication. The simulated conversion gain is -13 dB, input P1dB is -13dB, IIP3 is 4dBm, and DC power consumption is 26.62mW.


CONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 簡介 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 各章節介紹重點 4
Chapter 2 緩衝放大器、混頻器及次諧波混頻器架構概論 5
2.1 簡介 5
2.2 緩衝放大器電路架構 5
2.2.1 共源極放大器和疊接放大器小訊號模型 5
2.2.2 緩衝放大器雜訊指數 6
2.2.3 緩衝放大器非線性考量 8
2.2.4 緩衝放大器特性比較 10
2.3 混頻器電路架構 11
2.3.1 被動式混頻器 11
2.3.2 主動式混頻器 12
2.4 次諧波混頻器電路架構 13
2.4.1 被動次諧波混頻器 14
2.4.2 主動式次諧波混頻器 15
2.5 正交混頻器系統架構 18
2.6 正交振幅調變 19
Chapter 3 緩衝放大器 21
3.1 電路架構 21
3.2 電路運作原理 21
3.3 緩衝放大器電路設計 22
3.3.1 電晶體尺寸 22
3.3.2 電磁模擬 24
3.3.3 模擬結果 25
3.3.4 電路特性比較 29
3.3.5 電路佈局與晶片照片 30
Chapter 4 使用倍頻器之次諧波正交混頻器 32
4.1 電路架構 32
4.2 電路運作原理 33
4.2.1 倍頻器運作原理 34
4.2.2 交叉耦合對負載運作原理 34
4.2.3 單平衡混頻器運作原理 35
4.2.4 次諧波混頻器運作原理 38
4.3 使用倍頻器之次諧波正交混頻器電路設計 39
4.3.1 電晶體尺寸 39
4.3.2 電磁模擬 42
4.3.3 模擬結果 44
4.3.4 電路特性比較 49
4.3.5 電路佈局圖與晶片照片 50
Chapter 5 使用變壓器耦合之次諧波正交混頻器 51
5.1 電路架構 51
5.2 電路運作原理 52
5.2.1 次諧波混頻器運作原理 52
5.2.2 轉阻放大器運作原理 53
5.2.3 變壓器耦合運作原理 55
5.3 使用變壓器耦合之次諧波正交混頻器電路設計 58
5.3.1 電晶體尺寸 59
5.3.2 電磁模擬 60
5.3.3 模擬結果 61
5.3.4 電路特性比較 66
5.3.5 電路佈局與晶片照片 67
Chapter 6 量測 68
6.1 簡介 68
6.1.1 緩衝器量測簡介 68
6.1.2 混頻器量測簡介 69
6.2 緩衝放大器之電晶體模型修正 70
6.3 緩衝放大器之量測數據 72
6.3.1 小訊號增益 72
6.3.2 反射係數 72
6.3.3 雜訊指數 73
6.3.4 輸入P1dB 74
6.3.5 三階輸入截點 74
6.4 使用倍頻器之次諧波正交混頻器量測結果 75
6.4.1 反射係數 75
6.4.2 轉換增益 77
6.4.3 輸入P1dB 78
6.5 使用倍頻器之次諧波正交混頻器量測結果偏差原因 79
Chapter 7 結論 82
REFERENCE 84



REFERENCE
[1]Hsuan-Wei Yeh, “FMCW and monopulse radar for heart beat and respiration monitoring,” Graduate Institute of Electronics Engineering Master Thesis, National Taiwan University, July 2013.
[2]Bharathi Bhat and Shiban K. Koul, “Analysis, design and application of fin lines,” Artech House, Mar. 1987.
[3]https://zh.wikipedia.org/zh-tw/WiGig
[4]Terry Yao, Michael Q. Gordon, Keith K. W. Tang, Kenneth H. K. Yau, Ming-Ta Yang, Peter Schvan, and Sorin P. Voinigescu, "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[5]Alexander Tomkins, Ricardo Andres Aroca, Takuji Yamamoto, Sean T. Nicolson, Yoshiyasu Doi, and Sorin P. Voinigescu, "A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link," IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2085-2099, Aug. 2009.
[6]Jeng-Han Tsai, "A 55-64 GHz fully-integrated sub-harmonic wideband transceiver in 130 nm CMOS process," IEEE Microwave and Wireless Components Letters, vol. 19, no. 11. pp. 758-760, Nov. 2009.
[7]Jeng-Han Tsai and Tian-Wei Huang, "35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[8]Yuan Chai, Lianming Li, and Tiejun Cui, "Design of a 60 GHz LNA with 20 dB gain and 12 GHz BW in 65 nm LP CMOS," in 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), pp.1-4, Sept. 18-20, 2012.
[9]Yo-Sheng Lin, Tien-Hung Chang, Chang-Zhi Chen, Chi-Chen Chen, Hung-Yu Yang, and Simon S. Wong, "Low-power 48-GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz dual-conversion receiver," in 2009 International Symposium on VLSI Design, Automation and Test, pp. 88-91, April, 2009.
[10]John R. Long, "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[11]Yang Liu, Zhiqun Li, Qin Li, Chong Wang, and Zhigong Wang, "A high conversion gain millimeter-wave frequency doubler in 65nm CMOS," in 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 1-4, June 30-July 3, 2014.
[12]Jahnavi Sharma, Tolga Dinc, and Harish Krishnaswamy, "A 134 GHz +4dBm frequency doubler at ƒmax in 130 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 24, no. 11, pp. 784-786, Nov. 2014.
[13]Ting-Yueh Chin, Jen-Chieh Wu, Sheng-Fuh Chang, and Chia-Chan Chang, "Compact S-/KA -band CMOS quadrature hybrids with high phase balance based on multilayer transformer over-coupling technique," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 3, pp. 708-715, March 2009.
[14]Behzad Razavi, “RF Microelectronics,” second edition, Prentice Hall Communications Engineering and Emerging Technologies Series from Ted Rappaport, Oct. 2011
[15]Seong-Kyun Kim, Chenglin Cui, Guochi Huang, SoYoun Kim, and Byung-Sung Kim, "A 77 GHz low LO power mixer with a split self-driven wwitching cell in 65 nm CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 22, no. 9, pp. 480-482, Sep. 2012.
[16]Rahul M. Kodkani and Lawrence E. Larson, "A 24-GHz CMOS passive subharmonic mixer/downconverter for zero-IF zpplications," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1247-1256, May 2008.
[17]Fan Zhang, Bo Yang, and Efstratios Skafidas, "A low-power 5-75-GHz common-gate subharmonic mixer in 65-nm CMOS," in 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 133-136, Jan. 17-19, 2011.
[18]Chun-Hsien Lien, Pei-Si Wu, Kun-You Lin, and Huei Wang, "A 60-GHz single-balance gate-pumped down-conversion mixer with reduced-size rat-race hybrid on 130-nm CMOS process," in 2008 IEEE MTT-S International Microwave Symposium, pp. 1481-1484, June 15-20, 2008.
[19]Jhe-Jia. Kuo, Chun-Hsien Lien, Zuo-Min Tsai, Kun-You Lin, Klaus Schmalz, J. Christoph Scheytt, Huei Wang, "Design and analysis of down-conversion gate/base-pumped harmonic mixers using novel reduced-size 180∘ hybrid with different input frequencies," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2473-2485, Aug. 2012.
[20]Hsin-Chih Kuo, Han-Lin Yue, Ya-Wen Ou, Chien-Chih Lin, and Huey-Ru Chuang, "A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi antenna and balun bandpass filter for very-short-range gigabit communications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 1681-1691, 2013.
[21]David M. Pozar, “Microwave Engineering,” fourth edition, Wiley, Nov. 2011.
[22]Chun-Hsien Lien, Pin-Cheng Huang, Kun-Yao Kao, Kun-You Lin, and Huei Wang, "60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS processes," IEEE Microwave and Wireless Components Letters, vol. 20, no. 3, pp. 160-162, Mar. 2010.
[23]Sherif Ahmed Saleh Mohamed and Yiannos Manoli, "Design of low-power direct-conversion RF front-end with a double balanced current-driven subharmonic mixer in 0.13 µm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 5, pp. 1322-1330, May 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top