跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宥辰
研究生(外文):Yu-Chen Chen
論文名稱:K頻段功率放大器線性度提升技術
論文名稱(外文):K-band Power Amplifier with Linearity Enhancement Techniques
指導教授:盧信嘉
指導教授(外文):Hsin-Chia Lu
口試委員:黃天偉林坤佑蔡政翰
口試委員(外文):Tian-Wei HuangKun-You LinJeng-Han Tsai
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:172
中文關鍵詞:功率放大器線性度K頻段預失真寄生二極體線性器三階互調失真退縮功率附加效率最佳偏壓選擇自動調整偏壓技術
外文關鍵詞:power amplifierlinearityK-bandpre-distortionparasitic diode linearizerIMD3back-off power-added-efficiencyoptimal bias selectionadaptive-bias
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  此篇論文提出了兩個實現於台積電0.18-μm互補式金氧半導體製程應用於K頻段之功率放大器,旨在提升電路的線性度、輸出功率、功率附加效率以及退縮功率附加效率的表現。
  於第一個電路中,我們採用了預失真寄生二極體線性器,功率放大器使用了1.8 V偏壓給電,級間加入了寄生二極體線性器以提高電路整體線性度。此三級共源極之功率放大器在1.8 V以及線性器1.4 V開啟的情況下,實際量測可得K頻段操作的小訊號增益最大值為13.9 dB、OP1dB為14.1 dBm以及15.7 dBm的飽和輸出功率,PAE最大值以及位於OP1dB位置的PAE則分別為14.2%與12.1%,而在P1dB退縮6-dB位置的PAE是為5.2%。再經由雙調測試,可以觀察到此電路出現了一甜蜜點,其在三階互調失真的部分將有18 dBc的消除。
  在第二個電路中,依據最佳偏壓理論以3 V對功率放大器給電。兩級疊接架構能提供較高增益,也可降低電路匹配複雜度。在加入自動調整偏壓技術後,功率放大器在小訊號操作時將偏壓在AB類操作,大訊號操作時,則自動調整偏壓至A類操作。故可以透過此技術改善在P1dB退縮6-dB位置的PAE、降低電路靜態操作時的直流功耗。根據模擬結果,此功率放大器於K頻段操作的小訊號增益最大值為19 dB、OP1dB為16.9 dBm,位於OP1dB位置的PAE則為11.6%。相較A類操作,自動調整偏壓技術可降低約30%的直流功耗、在P1dB退縮6-dB位置的PAE則可獲得1.1%提升。由實際量測結果,大訊號表現未若模擬結果佳,但自動調整偏壓技術依然能省去14.5%直流功耗。另外為了達到最初的電路規格,我們也嘗試調整最佳化的量測結果。
  兩個功率放大器中模擬與實際量測的差異因素將會逐一討論,其包括了電磁後模擬的考慮不周、電阻阻值選定、毫米波頻段下的寄生效應以及溫度影響等,我們亦將提供除錯之結果。

In this thesis, two K-band power amplifiers implemented in TSMC 0.18-μm CMOS process are proposed to improve the linearity, output power, PAE and the back-off 6-dB efficiency.
First, a K-band power amplifier using 1.8 V supply voltage utilizing pre-distortion parasitic diode linearizer is designed and measured. Parasitic diode linearizer is utilized to improve overall circuit linearity. With 1.4 V control voltage for the linearizer of 3-stage CS PA turned on, the measured peak small signal gain is 13.9 dB, OP1dB is 14.1 dBm, and saturation power is 15.7 dBm. The PAE has a value of 12.1% at OP1dB, and 5.2% at 6-dB back-off from P1dB. Third-order intermodulation distortion (IMD3) can be mitigated to about 18 dBc when the sweet spot appears under two-tone measurement.
Second, a K-band power amplifier using optimal-selected 3 V supply voltage adopting adaptive-bias technique is designed and measured. The 2-stage cascode PA can provide higher gain and reduce matching complexity. With adaptive-bias circuit, power amplifier can be biasd at class-AB in small signal operation and class-A in large signal operation. Therefore, PAE at 6-dB back-off from P1dB can be improved, and DC power consumption can be reduced. According to the simulation results, this K-band cascade PA provides 19 dB small signal gain, OP1dB is 16.9 dBm, and PAE at OP1dB is 11.6%, PAE at 6-dB back-off from P1dB is 4.6%. Compared with the fixd-bias Class-A PA, the proposed PA saves about 30% power consumption, and the PAE at 6-dB back-off from P1dB can be improved 1.1%. According to the measurement results, large-signal performance is not as good as simulation, but 14.5% DC power consumption can be reduced by the adaptive-bias circuit. In order to meet the specification of this power amplifier, measurement results under optimized condition are provided as well.
The differences between simulation and measurement of both power amplifiers are discussed including factors such as EM post-simulation, resistance selection, parasitic effect and temperature. Finally, debug results are provided.

口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 ix
表目錄 xix
Chapter 1 簡介 1
1.1 背景與動機 1
1.2 文獻研究 2
1.3 頻段選取與偵測生物訊號之連續波雷達簡介 3
1.4 貢獻 6
1.5 論文架構 6
Chapter 2 功率放大器概論 7
2.1 介紹 7
2.2 功率放大器重要參數 8
2.2.1 功率 8
2.2.2 效率 9
2.2.3 線性度 10
2.2.4 功率增益與穩定度理論[19] 14
2.2.5 負載線與負載拉移理論[20] 17
2.2.6 功率放大器分類 22
2.3 線性化技術 26
2.3.1 前饋式(feed-forward)[22] 26
2.3.2 回授式(feedback)[20] 27
2.3.3 預失真(pre-distortion)[23] 28
2.4 功率附加效率提升技術 29
2.4.1 Doherty功率放大器[20] 29
2.4.2 自動調整偏壓技術(adaptive-bias)[9] 30
Chapter 3 採用寄生二極體線性器之功率放大器 31
3.1 Cold-FET線性器介紹 31
3.1.1 線性器操作概念 31
3.1.2 線性器操作原理[23] 32
3.1.3 寄生二極體線性器[24] 35
3.2 已發表相關文獻 36
3.2.1 採用90度延遲線之線性器功率放大器[25][26][27] 36
3.2.2 改動基極偏壓之線性器功率放大器[28] 37
3.2.3 採用寄生二極體之線性器功率放大器[24] 37
3.3 功率放大器設計 38
3.3.1 設計流程 39
3.3.2 輸出級設計尺寸挑選 40
3.3.3 輸出級功率放大器 43
3.3.4 線性器尺寸及偏壓挑選 44
3.3.5 功率分配計算 49
3.3.6 驅動級功率放大器 51
3.3.7 三級共源極功率放大器 53
3.4 模擬結果 54
3.4.1 小訊號模擬 55
3.4.2 穩定度 58
3.4.3 大訊號模擬 60
3.4.4 三階互調失真模擬 63
3.5 量測結果 64
3.5.1 小訊號量測 64
3.5.2 大訊號量測 68
3.5.3 三階互調失真量測 70
3.5.4 修正與討論 71
3.6 總結 83
Chapter 4 採用自動調整偏壓之功率放大器 86
4.1 自動調整偏壓技術介紹 86
4.1.1 自動調整偏壓操作概念 87
4.1.2 自動調整偏壓操作原理[30] 88
4.1.3 各項參數調整及說明[30] 89
4.1.4 自動調整偏壓電路之阻抗[30] 92
4.2 已發表相關文獻 94
4.2.1 採用二極體連接電晶體之自動調整偏壓功率放大器[9] 94
4.2.2 採用場效電晶體型態之可自動調整偏壓功率放大器[29] 95
4.3 電晶體疊接技術 96
4.3.1 共源極及疊接形式比較[31] 96
4.3.2 最佳偏壓選擇理論[32] 97
4.3.3 增益提升技術[6] 103
4.4 功率放大器設計 104
4.4.1 設計流程 105
4.4.2 輸出級設計尺寸挑選 106
4.4.3 輸出級功率放大器 107
4.4.4 輸出級自動調整偏壓電路尺寸及偏壓挑選 108
4.4.5 功率分配計算 109
4.4.6 驅動級功率放大器 109
4.4.7 驅動級自動調整偏壓電路尺寸及偏壓挑選 110
4.4.8 兩級疊接功率放大器 111
4.5 模擬結果 112
4.5.1 小訊號模擬 113
4.5.2 穩定度 117
4.5.3 自動調整偏壓模擬情形 119
4.5.4 大訊號模擬 121
4.6 量測結果 126
4.6.1 小訊號量測 127
4.6.2 大訊號量測 131
4.6.3 自動調整偏壓量測情形 134
4.6.4 三階互調失真量測 137
4.7 修正與討論 138
4.8 總結 164
Chapter 5 結論 168
REFERENCE 169

[1]Jri Lee, Yi-An Li, Meng-Hsiung Hung, and Shih-Jou Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2746 - 2756, Dec. 2010.
[2]Jong-Wook Lee, and Sang Moo Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 µm common-source MOSFETs,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 11, pp. 755-757, Nov. 2008.
[3]Jing-Lin Kuo, Zuo-Min Tsai, and Huei Wang, “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in European Microwave Conference, Oct. 2008, pp. 1425-1428.
[4]Chi-Cheng Hung, Jing-Lin Kuo, Kun-You Lin, and Huei Wang, “A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-µm CMOS,” in IEEE RFIC Symp. Dig., June 2010, pp. 557-560.
[5]Pin-Cheng Huang, Jing-Lin Kuo, Zuo-Min Tsai, Kun-You Lin, and Huei Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 248-251.
[6]Gang He, Bo Zhang, and Xubang Shen, “A K-band gain enhanced power amplifier in 0.18μm CMOS process by slow wave structure,” in IEEE International Symposium on Radio-Frequency Integration Technology, Aug. 2014, pp. 1-3
[7]Kun-Yao Kao, Yu-Chung Hsu, Kuan-Wei Chen, and Kun-You Lin, “Phase-delay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[8]Yi-Hsin Chen, Kun-Yao Kao, Chun-Yen Chao, and Kun-You Lin, “A 24 GHz CMOS power amplifier with successive IM2 feed-forward IMD3 cancellation,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1-4.
[9]Nai-Chung Kuo, Jui-Chi Kao, Che-Chung Kuo, and Huei Wang, “K-band CMOS power amplifier with adaptive bias for enhancement in back-off efficiency,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011, pp. 1-4.
[10]Tzu-Yuan Huang, Yu-Hsuan Lin, and Huei Wang, “A K-band adaptive-bias power amplifier with enhanced linearizer using 0.18-μm CMOS process,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1-3.
[11]Jeffery Curtis, Hongyu Zhou, Philip Hisayasu, Anirban Sarkar, and Farshid Aryanfar, “MM-wave radio, a key enabler of 5G communication,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2016, pp. 1-3.
[12]JungSook Bae, and Yong Seouk Choi, “System capacity enhancement of MMwave based 5G mobile communication system,” in Information and Communication Technology Convergence, Oct. 2015, pp. 291-294.
[13]Tatsunori Obara, Tatsuki Okuyama, Yuuichi Aoki, Satoshi Suyama, Jaekon Lee, and Yukihiko Okumura, “Indoor and outdoor experimental trials in 28-GHz band for 5G wireless communication systems,” in IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Aug. 2015, pp. 846-850.
[14]Shivansh Dave, Ankit Dubey, Saumil Macwan, and Hardik Modi, “5G cellular communication system with millimeter waves: study of requirements, hardware and biological effects,” in IEEE International Conference on Research in Computational Intelligence and Communication Networks, Nov. 2015, pp. 285-289.
[15]Changzhi Li and Jenshan Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in 2010 Asia-Pacific Microwave Conference, pp. 283 - 290, Dec. 7-10, 2010.
[16]Hsuan-Wei Yeh, “FMCW and monopulse radar for heart beat and respiration monitoring,” Master Thesis, Graduate Institute of Electronics Engineering, National Taiwan University, July 2013
[17]David Girbau, Antonio Lazaro, Angel Ramos, and Ramon Villarino, “Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,” IEEE Sensors Journal, vol. 12, no. 3, pp. 512-518, Mar. 2012.
[18]Brian Sveistrup Jensen, Sævar Þór Jónasson, Tom Keinicke Johansen, and Thomas Jensen, “Vital signs detection radar using low intermediate-frequency architecture and single-sideband transmission,” in 9th European Radar Conference (EuRAD), Oct. 31, 2012, pp. 67-70.
[19]David M. Pozar, Microwave Engineering: John Wiley & Sons, 2009.
[20]Steve C. Cripps, RF Power Amplifiers for Wireless Communications: Artech House, 2006.
[21]Young Yun Woo, Youngoo Yang, and Bumman Kim, “Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no.5, pp. 1969-1974, May 2006.
[22]Allen Katz, “Lineaization: reducing distortion in power amplifiers,” in IEEE Microwave Magazine, vol. 2, pp. 37-49, Dec. 2001.
[23]Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu, Yi-Lin Lee, Tian-Wei Huang, and Huei Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487-2496, Jun. 2006.
[24]Jin-Fu Yeh, Jen-Hao Cheng, Jeng-Han Tsai, and Tian-Wei Huang, “A 57-66 GHz power amplifier with a lineaization technique in 65-nm CMOS process,” in European Microwave Integrated Circuit Conference (EuMIC), Oct. 2014, pp. 309-312.
[25]Yu-Chung Hsu, Kun-Yao Kao, Jui-Chih Kao, Tzung-Chuen Tsai, and Kun-You Lin, “60 GHz CMOS power amplifier with modified pre-distortion linearizer,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2013, pp. 1-4.
[26]Yu-Chung Hsu, “Research on linearization techniques for CMOS power amplifier,” Master Thesis, Graduate Institute of Communication Engineering, National Taiwan University, July 2010.
[27]Kuan-Wei Chen, “Research on pre-distortion techniques for K-band CMOS power amplifier,” Master Thesis, Graduate Institute of Communication Engineering, National Taiwan University, July 2012.
[28]Jeng-Han Tsai, Chung-Han Wu, Hong-Yuan Yang, and Tian-Wei Huang, “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676-678, Dec. 2011.
[29]Tzung-Chuen Tsai, Kun-Yao Kao, and Kun-You Lin, “A K-band CMOS power amplifier with FET-type adaptive-bias circuit,” in 2014 Asia-Pacific Microwave Conference, Nov. 2014, pp.591-593.
[30]Tzung-Chuen Tsai, “Research on adaptive-bias technique for K-band CMOS power amplifier,” Master Thesis, Graduate Institute of Communication Engineering, National Taiwan University, July 2011.
[31]Yung-Nien Jen, Jeng-Han Tsai, Chung-Te Peng, and Tian-Wei Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 42-44, Jan. 2009.
[32]Yu-Chung Hsu, Yi-Shin Chen, Tzung-Chuen Tsai, and Kun-You Lin, “A K-band CMOS cascode power amplifier using optimal bias selection methodology,” in 2011 Asia-Pacific Microwave Conference, Dec. 2011, pp.793-796.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊