跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周承毅
研究生(外文):Cheng-Yi Jhou
論文名稱:應用於生醫系統之低功耗逐漸趨近式類比至數位轉換器之設計
論文名稱(外文):Design of Low Power SAR Analog-to-Digital Converters for Biomedical System Applications
指導教授:呂學士
指導教授(外文):Shey-Shi Lu
口試委員:孟慶宗游世安孫台平彭盛裕
口試委員(外文):Chin-Chun MengShih-An YuTai-Ping SunSheng-Yu Peng
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:100
中文關鍵詞:逐漸趨近式類比至數位轉換器數位錯誤補償電容切換程序耦合寄生
外文關鍵詞:successive-approximation registeranalog-to-digital convertersdigital error correctioncapacitor switching procedurecouplingparasitic.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出兩個適用於逐漸趨近式類比至數位轉換器的類比及混合電路設計技術。根據實際的晶片量測結果,我們證實了這些技巧的應用性。
第一個技術是單位電容的布局方法。在不考慮製程變異的情況下,比照之前的設計,我們確保每個單位電容所處在的環境和其他的單位電容是相同的。採用此技術的類比至數位轉換器在1伏特的操作電壓下,其功率消耗為6.2μW,有效位元數為9.47 bits。其品質因數為43.7 fJ/conversion-step。
第二個技術是混合式電容切換程序。我們提出了一個電容切換程序可以減少因電容切換程序而造成在比較器上的動態偏差電壓。採用此技術的類比至數位轉換器在1伏特的操作電壓下,其功率消耗為6.0μW,有效位元數為9.51 bits。其品質因數為41.1 fJ/conversion-step。
這兩個設計都是在0.18μm 1P6M CMOS technology製作的。


This thesis presents two analog and mixed-signal circuit design techniques for successive-approximation register (SAR) analog-to-digital converters (ADCs). According to the measurement results of the experimental prototypes, the presented techniques are verified.
The first technique is the layout schemes of a unit capacitor. Compared to last work [1], the surroundings of a unit capacitor is identical to each unit capacitor, which does not take process variation into consideration. This relevant prototype SAR ADC consumes 6.2μW at 1-V supply, and the effective number of bit (ENOB) is 9.47 bits. The resultant figure of merit (FoM) is 43.7 fJ/conversion-step.
The second technique is a hybrid capacitor switching procedure. In order to suppress the effect of dynamic offset in the comparator, a capacitor switching procedure is proposed. This relevant prototype SAR ADC consumes 6.0μW at 1-V supply, and the ENOB is 9.51 bits. The resultant FoM is 41.1 fJ/conversion-step.
Both of the prototypes are implemented in a 0.18μm 1P6M CMOS technology.


誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 The Fundamentals of Analog-to-Digital Converters 3
2.1 Introduction 3
2.2 Performance evaluation parameters 4
2.2.1 Resolution 4
2.2.2 Offset Error and Gain Error 4
2.2.3 Differential Nonlinearity (DNL) 5
2.2.4 Integral Nonlinearity(INL) 6
2.2.5 Signal-to-Noise Ratio(SNR) 7
2.2.6 Signal-to-Noise and Distortion Ratio(SNDR) 7
2.2.7 Effective Number of Bits(ENOB) 7
2.2.8 Total Harmonic Distortion(THD) 8
2.2.9 Spurious Free Dynamic Range(SFDR) 8
2.2.10 Dynamic Range(DR) 9
2.2.11 Figure of Merit(FoM) 10
2.3 ADC Architectures 11
2.3.1 Flash ADC 11
2.3.2 Pipeline ADC 12
2.3.3 Successive Approximation Register ADC 13
2.3.4 Delta-Sigma ADC 14
2.3.5 Comparison of the ADCs 15
Chapter 3 A 1V, 10-bits, Low Power SAR ADC with Shielded-Capacitor Layout Scheme 17
3.1 Introduction 17
3.2 SAR ADC Architecture 18
3.2.1 Basic Operation of Asynchronous SAR ADC 18
3.2.2 The Effect of Parasitic Capacitance in Capacitor Array 25
3.2.3 Digital Error Correction 29
3.2.4 Circuit Implementation 33
3.3 Building Blocks Implementation 36
3.3.1 Sample and Hold Circuit 36
3.3.2 Capacitor Array 44
3.3.3 Dynamic Comparator 48
3.3.4 SAR Control Logic 52
3.3.5 Digital Error Correction Logic 56
3.4 SAR ADC Simulation 58
3.4.1 Function Simulation 58
3.4.2 Dynamic Performance Simulation 59
3.4.3 Static Performance Simulation 62
3.5 Measurement Results 67
3.5.1 The PCB Design 69
3.5.2 Measurement Setup 71
3.5.3 Static Performance Measurement 72
3.5.4 Dynamic Performance Measurement 74
3.5.5 Performance Metric 77
Chapter 4 A 1V, 10-bits, Low Power SAR ADC with Hybrid Capacitor Switching Procedure 78
4.1 Introduction 78
4.2 Power Efficiency Concern in Capacitor Array 79
4.3 Hybrid Capacitor Switching Procedure 80
4.4 SAR ADC Architecture 81
4.4.1 Circuit Implementation 81
4.4.2 SAR ADC Simulation 85
4.4.3 Measurement Results 89
Chapter 5 Conclusions 96
References 97



[1]W. C. Li, “Analog-to-Digital Converter for Biomedical System,” National Taiwan University MS Thesis, 2015.
[2]C. C, Liu, S. J. Chang, G. Y. Huang, and Y Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[3]S. H. Cho, C. K. Lee, J. K. Kwon, and S. T. Ryu, "A 550-µw 10-b 40-MS/s SAR ADC with Multistep Addition-Only Digital Error Correction," IEEE Journal of Solid-State Circuits, vol. 46, no. 8, pp. 1881-1892, Aug. 2011.
[4]T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 2012.
[5]A. M. Abo, P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999.
[6]C. C. Liu, S. J. Chang, G. Y Huang, Y Z. Lin, C. M. Huang, C. H. Huang, L. Bu, and C. C. Tsai, "A 10b IOOMS/s 1.13mW SAR ADC with Binary-Scaled Error Compensation," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2010, pp. 386–387.
[7]H. W. Chang, “A Low Power Analog-to-Digital Converter for ECG Signal,” National Taiwan University MS Thesis, 2012.
[8]P. H. Fang, “Design and Application of Low Power Pipelined and SAR,” National Taiwan University MS Thesis, 2009.
[9]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13 μm CMOS process,” in IEEE Symp. VLSI Circuits Dig., Jun. 2009, pp. 236–237.
[10]S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um CMOS,” IEEE Journal of Solid-State Circuit, pp. 2669-2680, Dec. 2006.
[11]B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
[12]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[13]J. Y. Lin and C. C. Hsieh, "A 0.3 V 10-bit 1.17 f SAR ADC with Merge and Split Switching in 90 nm CMOS," IEEE Transactions on Circuits and Systems I, vol. 62, no. 1, pp. 70-79, Jan. 2015.
[14]G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, "A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012.
[15]C. C. Liu, C. H. Kuo, Y. Z. Lin, "A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov 2015.
[16]B. P. Ginsburg and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739 - 747, Apr. 2007.
[17]V. Hariprasath, J. Guerber, S. -H. Lee, and U. -K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy-efficiency," Electronics Letters, vol. 46, no. 9, pp. 620 - 621, Apr. 2010.
[18]B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE Int. Symp. Circuits and Systems, 2005, vol. 1, pp. 184–187.
[19]B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type voltage sense amplifier," IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148 - 1158, Jul. 2004.
[20]Samaneh Babayan-Mashhadi, and Reza Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 343-352.
[21]Jun He; Sanyi Zhan, Degang Chen, and Randall L. Geiger, "Analyses of Static and Dynamic Random Offset Voltages in Dynamic Comparators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 911-919, May 2009.
[22]Bernhard Goll, and Horst Zimmermann, "A Comparator with Reduced Delay Time in 65-nm CMOS for Supply Voltages Down to 0.65 V," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 11, pp. 810-814, Nov. 2009.
[23]Y.-C. Lien, "A 4.5-mW 8-b 750-MS/s 2-b/step asynchronous subranged SAR ADC in 28-nm CMOS technology," in Symposium on VLSI Circuits (VLSIC), Honolulu, HI, 2012.
[24]Pierluigi Nuzzo, Fernando De Bernardinis, Pierangelo Terreni, and Geert Van der Plas, "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1441-1454, Jul. 2008.
[25]F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-μm CMOS,” ISSCC Dig. Tech. Papers, pp. 176-177, Feb., 2002.
[26]Bernhard Goll, and Horst Zimmermann, "A 0.12μm CMOS Comparator Requiring 0.5V at 600MHz and 1.5V at 6GHz," in IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊