跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋大成
研究生(外文):Da-Cheng Sung
論文名稱:小波轉換技術於彩色影像內插的應用
論文名稱(外文):Color Filter Array Demosaicing by Using Wavelet Transform Scheme
指導教授:曹恆偉曹恆偉引用關係
指導教授(外文):Hen-Wai Tsao
口試委員:傅楸善賴永康簡韶逸范育成黃朝宗陳鴻興
口試委員(外文):Chiou-shann FuhYeong-kang LaiShao-Yi ChienYu-Cheng FanChao-Tsung HuangHung-Shing Chen
口試日期:2016-01-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:106
中文關鍵詞:彩色影像內插法
外文關鍵詞:CFA interpolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
影像感測器是數位相機中擷取影像的重要元件,要記錄每一個像素的紅、藍,綠三個顏色,就需要三個影像感測器,為了節省成本和空間,大部分數位相機只採用一個影像感測器,因此需要彩色濾波器陣列和彩色影像內插技術,彩色濾波陣列將紅、藍,綠三顏色過濾後,只通過其中一個顏色,經過影像感測器記錄後,再由彩色影像內插技術利用相鄰像素顏色將原來像素的紅、藍,綠三顏色還原,這個處理過程稱為彩色影像內插技術。
本論文主旨在設計和分析彩色影像內插演算法,研究著重在彩色影像內插技術中的二個部分,分別是邊緣偵測分類器和使用次波段合成技術。在本論文的第一部分,首先介紹彩色影像內插的研究背景和研究動機,然後回顧傳統彩色影像內插技術。傳統彩色影像內插技術依照使用的方法可以分成三類演算法:分別是無邊緣偵測演算法、邊緣偵測演算法及頻率相關演算法◦邊緣偵測演算法在彩色影像內插技術中是非常重要的一部分,因為當運用相鄰像素內插還原遺失的像素時,沿著邊緣內插或是跨過邊緣內插,結果會有相當大的差別,在本論文的第二部分將會介紹傳統邊緣偵測分類器和我們提出的小波轉換邊緣偵測分類器◦在彩色影像內插技術處理過程中,有兩個影響影像品質的關鍵因素,分別是拉鍊效應和色彩偏差效應,在本論文的第三部分,提出的小波轉換彩色影像內插技術,可以大幅降低拉鍊效應和色彩偏差效應,首先,提出的小波轉換彩色影像內插技術利用邊緣偵測方法,內插還原初始的遺失像素值,其次,再利用小波轉換後,不同色彩間的高頻次波段的高相關性,還原得到準確的內插遺失像素綠色色彩值,最後再運算更新紅色與藍色的高頻次波段以降低色彩偏差。
本論文提出了高效率的邊緣偵測分類器及小波轉換彩色影像內插技術,實驗結果顯示,提出的小波轉換彩色影像內插技術保留了邊緣的細節並且還原了高品質影像。


Digital still cameras use image sensors to capture images. To reduce the size of digital still cameras, a single image sensor instead of three image sensors should be used. A single image sensor overlaid with a color filter array (CFA) that only captures one color channel at each pixel; thus, the other two missing color channels at each pixel must be reproduced from neighboring pixels. This procedure is known as CFA interpolation or demosaicking.
The main goal of this thesis is to design and analyze algorithms of CFA interpolation. Our research focuses on two CFA interpolation systems: classifiers for edge detection and demosaicking by using subband synthesis.
At the first part of this thesis, we introduce the background of CFA interpolation and the research motivation. Then, the traditional techniques of CFA interpolation are reviewed. They can be categorized into three groups which are non-edge-sensing algorithms, edge-sensing algorithms and frequency correlation algorithms.
Classifiers for edge detection are important in CFA interpolation, since interpolating a missing pixel along an edge or across an edge can result in apparently different interpolation. In the second part of this thesis, classifiers for edge detection are introduced and a novel wavelet-based interpolation algorithm is presented to predict the direction of edges.
In CFA interpolation process, there are two artefacts, i.e. zipper effect and false color artefacts may affect the CFA interpolation performance. In the third part of this thesis, a wavelet based CFA interpolation method is presented to reduce zipper effect and false color artefacts. First, an edge detection method is used to interpolate the initial missing color channels. Second, the high correlations between wavelet subbands of the different color channels are explored to obtain accurate green color values of the estimated green channel. Finally, the high-frequency subbands of red and blue channels are iteratively updated to reduce false color artefacts.
In this dissertation, effective classifiers for edge detection and a wavelet based CFA interpolation algorithm are presented. Experimental results demonstrate that our proposed method can indeed preserve edges and restore images with high quality.


誌謝 i
摘要 iii
Abstract v
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background of Color Filter Array Demosaicing 1
1.2 Research Motivation 7
1.3 Scope of Research 8
1.3.1 Classifiers for Edge Detection 8
1.3.2 Demosaicing using Sub-band Synthesis 9
1.4 Organization of Dissertation 9
Chapter 2 Overview of Techniques used in Color Filter Array Demosaicing 11
2.1 Non-edge-sensing algorithms 11
2.1.1 Nearest neighbor rep1ication 12
2.1.2 Bilinear interpolation 13
2.1.3 Constant-hue-based interpolation 14
2.1.4 Color difference interpolation 16
2.2 Edge-sensing algorithms 18
2.2.1 Adaptive edge-sensing algorithms 19
2.2.2 Edge-sensing with second-order correction 21
2.3 Frequency correlation algorithms 24
2.4 Conventional sub-band synthesis methods 25
2.4.1 Alternating projections 25
2.4.2 Enhanced alternating projection method 29
2.4.3 High-frequency sub-band synthesis method 30
2.5 Conclusions 31
Chapter 3 Classifiers for Edge Detection 33
3.1 Spatial Edge Classifier 34
3.2 Spectral Edge Classifiers 37
3.2.1 Demosaicing using sub-band correlation method 38
3.2.2 DWT and proposed demosaicing using sub-band based classifiers 39
3.3 Conclusions 46
Chapter 4 Experiment Results: Spatial Edge and Spectral Edge Classifiers 47
4.1 Peak Signal-to-Noise Ratio comparison 47
4.2 Visual Comparison 49
Chapter 5 Demosaicing by Using Subband Synthesis 53
5.1 Adaptive Edge Sensing Color interpolation 54
5.1.1 Initial Estimation of the Green Channel: 54
5.1.2 Red or Blue Channel Interpolation: 56
5.2 Subband Synthesis of the Interpolation Image 57
5.2.1 Downsampling the Green and Red Channels 58
5.2.2 Decomposing the Green Channel into Four Subbands 58
5.2.3 Decomposing the Red Channel into Three Subbands 59
5.2.4 Replace LH and HL Subbands of the Green Channel by Compensated LH and HL Subbands 59
5.3 Iterative Subbands Synthesis of the Red and Blue Channels 61
5.3.1 Updating the Red and Blue Channels 61
5.3.2 Iterative updating of the Red and Blue Channels 61
5.4 Conclusion 62
Chapter 6 Experimental Result of Demosaicking by Using Subband Synthesis 63
6.1 Peak Signal-to-Noise Ratio comparison 65
6.2 Visual Comparison 68
6.3 Conclusion 75
Chapter 7 Conclusions 97
7.1 Principal Contributions 98
7.2 Future Directions for research 99
7.2.1 Joint CFA interpolation and image resizing function 99
7.2.2 Using image classification and multiple CFA demosaicing algorithms 100
7.2.3 Adaptive demosaicing according to CFA pattern 101
Bibliography 102
Publication List 105
Resume 106


[1] http://www.foveon.com/
[2] M. Parmar and S. J. Reeves, “A perceptually based design methodology for color filter arrays,” in Proc. International Conference Acoustics, Speech, Signal Processing, 2004, pp. 473–476.
[3] P. Hao, Y. Li, Z. Lin and Eric Dubois,” A geometric method for optimal design of color filter arrays,” IEEE Tran. on Image Processing, vol. 20, no. 3, March 2011.
[4] B. E. Bayer, “Color Imaging Array,” U.S. Patent 3 971 065, 1976.
[5] J.Wang, C. Zhang and P. Hao,” New color filter arrays of high light sensitivity and high demosaicking performance,” 2011 18th IEEE International Conference on Image Processing.
[6] K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Processing, vol. 17, no.10, pp. 1876–1890, Oct. 2008.
[7] E. B. Gindele and A. C. Gallagher, “Sparsely Sampled Image SensingDevice With Color and Luminance Photosites,” U.S. Patent 6 476 865B1, 2002.
[8] L. Condat, “A new color filter array with optimal sensing properties,” in Proc. IEEE International Conference Image Processing, Nov. 2009, pp. 457–460.
[9] Jay Neitz & Gerald H. Jacobs,” Polymorphism of the long-wavelength cone in normal human colour vision,” Nature 323, 623 - 625, 16 October 1986.
[10] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” in
Proc. SPIE, vol. 6822, p. 68221J, 2008.
[11] D. R. Cok, “Signal processing method and apparatus for producing interpolated
chrominance values in a sampled color image signal,” U.S. Patent 4 642 678, Feb.
1986.
[12] R. Lukac and K. N. Plataniotis, “Normalized color-ratio modeling for CFA interpolation,” IEEE Trans. Consumer. Electron. , vol. 50, no. 2,pp. 737–745, May 2004.
[13]R. Lukac, K. Martin, and K. N. Plataniotis, “Demosaicked image postprocessing using local color ratios,” IEEE Trans. on Circuits Systems for Video Technology, vol. 14, no. 6, pp. 914–920, Jun. 2004.
[14]S.-C. Pei and I.-K. Tam, “Effective color interpolation in ccd color filter arrays using
signal correlation,” IEEE Trans. on Circuits Systems for Video Technology, vol. 13,
no. 6, pp.503–513, Jun. 2003.
[15]Yu-Cheng Fan, Yi-Feng Chiang, and Yin-Te Hsieh, “Constant-hue-based color filter
array demosaicing sensor for digital still camera implementation,” IEEE Sensors Journal, vol. 13, no. 7, July 2013.
[16] X. Li,”Demosaicing by Successive Approximation,” IEEE Trans, Image Processing,
vol. 14, no. 3, March 2005.
[17]R.H. Hibbard, “Apparatus and method for adaptively interpolating a full color image
utilizing luminance gradients,” U.S. Patent 5 382 976, 1995.
[18]J. E. Adams Jr., “Interactions between color plane interpolation and other image
processing functions in electronic photography,” Proc. SPIE, vol.2416, pp. 144–151,
Feb. 1995.
[19]J. E. Adams and J. F. Hamilton Jr., “Adaptive color plane interpolation in single
color electronic camera,” U.S. Patent 5 629 734, May. 1997.
[20]J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for
digital cameras,” Proc. SPIE, vol.3028, pp. 117–125, Feb.1997.
[21]Keigo Hirakawa and Thomas W. Parks , “Adaptive homogeneity-directed
demosaicing algorithm ,” IEEE Trans. Image Processing, vol. 14, no. 3, March 2005.
[22]D. Menon, S. Andriani, and G. Calvagno, “Demosaicing with directional filtering
and a posteriori decision,” IEEE Trans. Image Processing, vol. 16, no. 1, pp. 132-
141, Jan. 2007.
[23] C.-Y. Su, "Highly effective iterative demosaicing using weighted-edge and color-
difference interpolations, "IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 639-645, May 2006.
[24]S.-H. Yun, “Color interpolation by expanding a gradient method,” IEEE Trans. on Consumer Electronics, vol. 54, no. 4, Nov. 2008.
[25]H. A. Chang, and H. H. Chen, “Stochastic color interpolation for digital cameras,”
IEEE Trans. Circuits Syst. Video Technology, vol. 17, no. 8, pp. 964-973, 2007.
[26]C.-Y. Su and W.-C. Kao, “Effective demosaicing using sub-band correlation,” IEEE
Trans. Consumer Electronics, vol. 55, no. 1, February 2009.
[27]Alain Hore and Djemel Ziou,” An edge-sensing generic demosaicing algorithm,”
IEEE Trans. Image Processing, vol. 20, no. 11, Nov. 2011.
[28]Ibrahim Pekkucuksen and Yucel Altunbasak,” Edge strength filter based color filter
array interpolation,” IEEE Trans. Image Processing, vol. 21, no. 1, Jan. 2012.
[29]Da-Cheng Sung and Hen-Wai Tsao,” A gradient based edge sensing scheme for color filter array demosaicking,” Proc. IEEE 2nd Global Conference Consumer Electronics (GCCE), pp.249-252, 2013.
[30] Da-Cheng Sung and Hen-Wai Tsao,” Demosaicing using sub-band-based classifiers,” Electronics Letters, vol. 51, Issue: 3, 2015.
[31] J.W. Glotzbach, R.W. Schafer, and K. Illgner, “A method of color filter array interpolation with alias cancellation properties,” IEEE Proc. International Conference Image Processing, vol. 1, pp. 141–144, 2001.
[32]B.K. Gunturk, Y. Altunbasak, and R.M. Mersereau, “Color plane interpolation using
alternating projections,” IEEE Trans. Image Processing, vol. 11, no. 9, pp.997–1013, Sept. 2002.
[33]L.Chang and Y.-P. Tan, “Effective use of spatial and spectral correlations for color
filter array demosaicking,” IEEE Trans. on Consumer Electronics, vol. 50, no. 1,
Feb. 2004.
[34]Li Chen, Kim-Hui Yap, and Yu He,”Sub-band synthesis for color filter array demosaicking,” IEEE Trans. systems, man, and cybernetics—part a: systems and humans, vol. 38, no. 2, March 2008.
[35] JPEG 2000 image coding system: Core coding system, ISO=IEC 15444-1:2004, (JPEG committee, 2004).
[36] C.-Y. Su and Y.-S. Lin, "Color interpolation using wavelet-based classifiers," Electronics Letters, vol. 43, no. 12, pp. 667-669, June 2007.
[37]W. T. Freeman, "Median filter for reconstructing missing color samples," U.S. Patent 4,724,395, 1988.
[38]Jim S. Jimmy Li and Sharmil Randhawa ,”Color filter array demosaicking using high-order interpolation techniques with a weighted median filter for sharp color edge preservation ,” IEEE Trans. Image Processing, vol. 18, no. 9, September 2009.
[39]Kodak Lossless True Color Image Suite. (1999, Nov.) [Online].Available: http://r0k.us/graphics/kodak/
[40] C. A. Laroche and M. A. Prescott, “Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients,” U.S. Patent 5,373,322, 1994.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top