|
[1]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovolt: Res. Appl. Vol. 23, pp. 1–9, 2015. [2]M. Powalla and B. Dimmler, “Scaling up issues of CIGS solar cells,” Thin Solid Films, vol. 361-362, pp. 540-546, 2000. [3]C. W. Chen, T. C. Chang, P. T. Liu, H. Y. Lu, K. C. Wang, C. S. Huang, C. C. Ling, and T. Yuen, “High-performance hydrogenated amorphous Si TFT for AMLCD and AMOLED applications,” IEEE Electron Device Lett., vol. 26, pp. 10, 731–733, 2005. [4]H. Gleskova, and S. Wagner, “Electron mobility in amorphous silicon thin-film transistors under compressive strain,” Applied Physics Letters, vol. 79, pp. 3347 2001. [5]S. Dinca, G. Ganguly, Z. Lu, E. A. Schiff, V. Vlahos, C. R. Wronski, and Q. Yuan, “Hole Drift-Mobility Measurements in Contemporary Amorphous Silicon,” Materials Research Society Symposium Proceedings, vol. 762, pp. 340-350, 2003. [6]J. W. Lee, J. D. Cohen, and W. N. Shafarman, “The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements,” Thin Solid Films, vol. 480-481, pp. 336, 2005. [7]B. Schumann, H. Neumann, A. Temple, G. Kűhn, and E. Nowak, “Structural and electrical properties of CuIn0.7Ga0.3Se2 epitaxial layers on GaAs substrates,” Krist. Tech., vol. 15, pp. 71, 1980. [8]M. Rusu, P. Gashin, and A. Simashkevich, “Electrical and luminescent properties of CuGaSe2 crystals and thin films,” Sol. Energy Mater. Sol. Cells, vol. 70, pp. 175, 2001. [9]S. A. Dinca, E. A. Schiff, W. N. Shafarman, B. Egaas, R. Noufi, and D. L. Young, “Electron drift-mobility measurements in polycrystalline CuIn1−xGaxSe2 solar cells,” Applied Physics Letters, vol. 100, pp. 103901, 2012. [10]D. Kuciauskas, J. V. Li, M. A. Contrera, J. Pankow, and P. Dippo, “Charge carrier dynamics and recombination in graded band gap CuIn1−xGaxSe2polycrystalline thin-film photovoltaic solar cell absorbers,” Journal of Applied Physics, vol. 114, pp. 154505, 2013. [11]W.-W. Hsu, J. Y. Chen, T.-H. Cheng, S. C. Lu, W.-S. Ho, Y.-Y. Chen, Y.-J. Chien, and C. W. Liu, “Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3,” Applied Physics Letters, vol. 100, pp. 023508, 2012. [12]M. Bouttemy, P. Tran-Van, I. Gerard, and A. Etcheberry, “Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions,” Thin Solid Films, vol. 519, pp. 7207-7211, 2011. [13]A. K. Harman, S. Ninomiya, and S. Adachi, "Optical constants of sapphire (alpha-Al2O3) single crystals". Journal of Applied Physics, vol. 76, pp. 8032–8036, 1994. [14]J. R. Weber, A. Janotti, and C. G. Van de Walle, “Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices,” J. Appl. Phys., vol. 109, pp. 033715, 2011. [15]T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci Technol. Adv. Mater., vol. 11, pp. 044305, 2010. [16]S. Kang, R. Sharma, J.-K. Sim, C.-R. Lee, “Band gap engineering of tandem structured CIGS compound absorption layer fabricated by sputtering and selenization,” Journal of Alloys and Compounds, vol. 563, pp. 207–215, 2013. [17]W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, and D. Levi, “Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells,” Thin Solid Films, vol. 517, pp. 2360-2364 2009. [18]P. O. Grabitz, U. Rau, and J. H. Werner, “Modeling of spatially inhomogeneous solar cells by a multi-diode approach” phys. stat. sol. (a), vol. 202, No. 15, pp. 2920–2927, 2005. [19]Synopsys, “Sentaurus Device User Guide”, p. 6, Synopsys, Inc. 2014. [20]S.-H. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, “Spectroscopic evidence for a surface layer in CuInSe2:Cu deficiency,” Appl. Phys. Lett., vol. 91, pp. 021904, 2007. [21]M. Gloeckler, Ph.D. thesis, “DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS,” pp. 31, Colorado State University, Colorado, 2002. [22]W. K. Metzger, I. L. Repins, and M. A. Contreras “Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett., vol. 93, pp. 022110, 2008. [23]S. Shirakata and T. Nakada “Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Thin Solid Film, vol. 515, pp. 6151-6154, 2007. [24]M. I. Alonso, M. Garriga, C. A. Durante Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A, vol. 74, pp. 659-664, 2002. [25]J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection Optimization for Alternative Thin-Film Photovoltaics,” IEEE Journal of Photovoltaics, vol. 3, pp. 472-475, 2013. [26]M. Elbar, S. Tobbeche, A. Merazga, “Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell”, Solar Energy, vol. 122, pp. 104-112, 2015. [27]T. Minemoto , T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation,” Solar Energy Materials & Solar Cells, vol. 67, pp. 83-88, 2001. [28]R. - J. Hsu, Master thesis, “IBC and CIGS Based Solar Cell Simulation,” National Taiwan University, 2011. [29]A. Slobodskyy, T. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn 1 − x Ga x Se 2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett., vol. 97, pp. 251911, 2010. [30]J. H. Werner, J. Mattheis, and U. Rau, “Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2” Thin Solid Films, vol. 480-481, pp. 399-409, 2005. [31]B.-C. Shih, Y. Zhang, W. Zhang,and P. Zhang, “Screened Coulomb interaction of localized electrons in solids from first principles” Phys. Rev. B., vol. 85, pp. 045132, 2012. [32]S. H. Song, S. A. Campbell, “Heteroepitaxy and the Performance of CIGS Solar Cells” Proc. Photovoltaic Specialists Conference (PVSC), IEEE 39th, p. 2534-2539, 2013. [33]S. Luo, J-H. Lee, C. W. Liu, J-M. Shieh, C-H. Shen, T-T. Wu, D. Jang, J. R. Greer, “Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation”, Appl. Phys. Lett., vol. 105, pp. 011907, 2014. [34]I. V. Bodnar, A. P. Bologa, L. A. Makovetskaya, G. P. Popelnyuk, “Thermal Expansion and Conductivity of CuGax, In1-xSe2 Solid Solution” Crystal Res. &technol., vol. 20, pp. K29-K33, 1985. [35]S.-H. Wei, A. Zunger, I.-H. Choi, and P. Y Yu, “Trends in band-gap pressure coefficients in chalcopyrite semiconductors” Phys. Rev. B., vol. 58, pp. R1710--R1713, 1998. [36]A. Slobodskyy, T. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, and U. Lemmer, “In-depth analysis of the CuIn 1 − x Ga x Se 2 film for solar cells, structural and optical characterization,” Appl. Phys. Lett. vol. 97, pp. 251911, 2010. [37]J. H. Werner, J. Mattheis, and U. Rau, “Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2” Thin Solid Films vol. 480-481, pp. 399-409, 2005. [38]S. Luo, J-H. Lee, C. W. Liu, J-M. Shieh, C-H. Shen, T-T. Wu, D. Jang, J. R. Greer, “Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation”, Appl. Phys. Lett., vol. 105, pp. 011907, 2014. [39]M. I. Alonso, M. Garriga, C. A. Durante Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A, vol. 74, pp. 659-664, 2002. [40]C. H. Henry, “Limiting Efficiency of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells,” J. Appl. Phys., vol. 51, pp. 4494, 1980.
|