|
[1] D. J. C. MacKay. Encyclopedia of sparse graph codes. [Online]. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html [2] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications, 1995.(PIMRC’95), Toronto, Canada, Sep. 1995, pp. 71–75. [3] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998. [4] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Elect. Lett., vol. 38, no. 5, pp. 246–247, 2002. [5] J. Tellado, Peak to Average Power Reduction for Multicarrier Modulation. Stanford Univ., 2000. [6] D. L. Jones, “Peak power reduction in OFDM and DMT via active channel modification,” in Proc. Asilomar Conference on Signals, Systems, and Computers, vol. 2, 1999, pp. 1076–1079. [7] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sep. 2003. [8] S.-K. Deng and M.-C. Lin, “Recursive clipping and filtering with bounded distortion for PAPR reduction,” IEEE Trans. Commun., vol. 55, no. 1, pp. 227–230, Jan. 2007. [9] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Elect. Lett., vol. 30, no. 25, pp. 2098–2099, 1994. [10] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peakto-average power ratio in multicarrier communications,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, 2000. [11] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Elect. Lett., vol. 32, no. 22, pp. 2056–2057, 1996. [12] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239–241, 2001. [13] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Elect. Lett., vol. 33, no. 5, pp. 368–369, 1997. [14] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Elect. Lett., vol. 36, no. 14, pp. 1226–1228, 2000. [15] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86–88, 2000. [16] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, 2001. [17] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887–890, 2004. [18] Y.-C. Liu, C.-F. Chang, S.-K. Lee, and M.-C. Lin, “Deliberate bit flipping with error-correction for PAPR reduction,” IEEE Trans. Broadcast., accepted. [19] H.-B. Jeon, K.-H. Kim, J.-S. No, and D.-J. Shin, “Bit-based SLM schemes for PAPR reduction in QAM modulated OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 3, pp. 679–685, Sep. 2009. [20] H.-B. Jeon, J.-S. No, and D.-J. Shin, “A low-complexity SLM scheme using additive mapping sequences for PAPR reduction of OFDM signals,” IEEE Trans. Broadcast., vol. 57, no. 4, pp. 866–875, Dec. 2011. [21] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. IT-8, pp. 21–28, Jan. 1962. [22] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low-density parity-check codes,” Electron Lett., vol. 32, pp. 1645–1646, Aug. 1996. [23] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001. [24] S. Lin and D. J. Costello, Error Control Coding. PEARSON Prentice Hall, 2004. [25] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005. [26] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001. [27] B. Vasic, A. Cvetkovic, S. Sankaranarayanan, and M. Marcellin, “Adaptive error protection low-density parity-check codes for joint source-channel coding schemes,” in Proceedings International Symposium of Information Theory (ISIT), 2003, p. 267. [28] X. Yang, D. Yuan, P. Ma, and M. Jiang, “New research on unequal error protection (uep) property of irregular LDPC codes,” in Consumer Communications and Networking Conference, 2004, pp. 361–363. [29] Y. Li and W. E. Ryan, “Bit-reliability mapping in LDPC-coded modulation systems,” IEEE Commun. Lett., vol. 9, no. 1, pp. 1–3, 2005. [30] M. Lunglmayr and J. Berkmann, “Optimized mapping schemes for LDPC coded higher order modulated QAM transmission,” EUROCAST, pp. 952–959, 2007. [31] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001. [32] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001. [33] W. E. Ryan and S. Lin, Channel Codes. Cambridge Univ., 2009. [34] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2141–2155, Sep. 2003. [35] G. Durisi, L. Dinoi, and S. Benedetto, “eIRA codes for coded modulation systems,” in IEEE International Conference on Communications (ICC), 2006, pp. 1125–1130. [36] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 271–280. [37] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006. [38] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2033–2051, May 2006. [39] Z. Cheng, J. Castura, and Y. Mao, “On the design of raptor codes for binary-input Gaussian channels,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3269–3277, Nov. 2009. [40] R. J. Barron, C. K. Lo, and J. M. Shapiro, “Global design methods for raptor codes using binary and higher-order modulations,” in IEEE Military Communications Conference, 2009, pp. 1–7. [41] S.-H. Kuo, Y. L. Guan, S.-K. Lee, and M.-C. Lin, “A design of physical-layer raptor codes for wide SNR ranges,” IEEE Commun. Lett., vol. 18, no. 3, pp. 491–494, Mar. 2014. [42] S.-H. Kuo, Some Designs of Physical-Layer Raptor Codes. National Taiwan Univ., 2015. [43] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by iterative decoding of linear codes with low-density generator matrix,” IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.
|