跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉顏慶
研究生(外文):Yen-Ching Liu
論文名稱:在正交分頻多工系統中以特意位元翻轉與錯誤更正碼降低峰均比之研究
論文名稱(外文):Deliberate Bit Flipping with Error-Correction for PAPR Reduction in OFDM Systems
指導教授:林茂昭
口試委員:蘇賜麟趙啟超呂忠津楊谷章蘇育德陸曉峯邱茂清翁詠祿
口試日期:2016-07-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:95
中文關鍵詞:正交分頻多工系統均峰值位元翻轉低密度奇偶檢查碼非對稱的錯誤保護密度進化猛禽碼
外文關鍵詞:Orthogonal frequency division multiplexing (OFDM)peak-to-average power ratio (PAPR)bit-flippinglow-density parity-check (LDPC) codesunequal error protection (UEP)density evolutionRaptor code
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在正交分頻多工系統中,位元翻轉技術可用來降低峰均比。
而錯誤更正編碼可用來減緩因位元翻轉技術所造成的位元錯誤率惡化。
我們提出一些設計去適當地整合特意位元翻轉技術跟非對稱錯誤保護的錯誤更正碼。
我們使用一種修改過的密度進化方法來尋找適合我們位元翻轉系統的編碼度分佈。
而另一種錯誤更正碼,即猛禽碼亦可被用來減輕因翻轉位元所造成的位元錯誤率惡化。
模擬結果顯示出在很多狀況當中,我們所提出的設計可以有效的降低峰均比而且伴隨著非常微弱的位元錯誤率惡化。

In the orthogonal frequency division multiplexing (OFDM) communications, bit flipping can be used for the reduction of peak-to-average-power ratio (PAPR).
Error-correction coding can be used to relieve the degradation of bit-error rates (BER) resultant from the bit-flipping.
We propose designs which appropriately integrate deliberate bit flipping and error-correcting codes with unequal error protection.
A modified density evolution method is used for obtaining appropriate code degree distributions to our bit-flipping system.
Another error-correcting codes, i.e. Raptor code also can be adopted to mitigate the BER degradation causing of the flipped bits.
Simulation results show that our proposed designs can obtain effective PAPR reduction with very minor BER degradation in many cases.

口試委員會審定書 i
致謝iii
中文摘要v
Abstract vii
Contents ix
List of Figures xi
List of Tables xv
1 Introduction 1
2 Deliberate Bit Flipping For PAPR Reduction 5
2.1 The Proposed System Model And Some Basics . . . . . . . . . . . . . 5
2.2 Deliberate Bit-Flipping For PAPR Reduction . . . . . . . . . . . . . . 10
2.2.1 Clipping-Based Bit-Flipping (CBBF) Method . . . . . . . . . . 13
2.2.2 Active Constellation Extension Combined With CBBF Method 17
2.2.3 SLM-Based Bit-Flipping (SLMBBF) Method . . . . . . . . . . 22
2.3 PAPR Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Error Correction Based On Unequal Error Protection For Bit-Flipping System
41
3.1 Unequal Error Protection . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Modified Density Evolution . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Quantized Density Evolution (QDE) . . . . . . . . . . . . . . . 44
3.2.2 Modified QDE for Systems with Flipped Bits . . . . . . . . . . 47
3.3 Code Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Modification of Channel LLR . . . . . . . . . . . . . . . . . . . . . . 54
3.5 BER Peroformances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Error Correction Based On Raptor Codes For Bit-Flipping System 71
4.1 Raptor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Conclusions and Future Work 85
Bibliography 89

[1] D. J. C. MacKay. Encyclopedia of sparse graph codes. [Online]. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
[2] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications, 1995.(PIMRC’95), Toronto, Canada, Sep. 1995, pp. 71–75.
[3] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[4] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Elect. Lett., vol. 38, no. 5, pp. 246–247, 2002.
[5] J. Tellado, Peak to Average Power Reduction for Multicarrier Modulation. Stanford Univ., 2000.
[6] D. L. Jones, “Peak power reduction in OFDM and DMT via active channel modification,” in Proc. Asilomar Conference on Signals, Systems, and Computers, vol. 2, 1999, pp. 1076–1079.
[7] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sep. 2003.
[8] S.-K. Deng and M.-C. Lin, “Recursive clipping and filtering with bounded distortion for PAPR reduction,” IEEE Trans. Commun., vol. 55, no. 1, pp. 227–230, Jan. 2007.
[9] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Elect. Lett., vol. 30, no. 25, pp. 2098–2099, 1994.
[10] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peakto-average power ratio in multicarrier communications,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, 2000.
[11] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Elect. Lett., vol. 32, no. 22, pp. 2056–2057, 1996.
[12] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239–241, 2001.
[13] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Elect. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[14] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Elect. Lett., vol. 36, no. 14, pp. 1226–1228, 2000.
[15] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86–88, 2000.
[16] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, 2001.
[17] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887–890, 2004.
[18] Y.-C. Liu, C.-F. Chang, S.-K. Lee, and M.-C. Lin, “Deliberate bit flipping with error-correction for PAPR reduction,” IEEE Trans. Broadcast., accepted.
[19] H.-B. Jeon, K.-H. Kim, J.-S. No, and D.-J. Shin, “Bit-based SLM schemes for PAPR reduction in QAM modulated OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 3, pp. 679–685, Sep. 2009.
[20] H.-B. Jeon, J.-S. No, and D.-J. Shin, “A low-complexity SLM scheme using additive mapping sequences for PAPR reduction of OFDM signals,” IEEE Trans. Broadcast., vol. 57, no. 4, pp. 866–875, Dec. 2011.
[21] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
[22] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low-density parity-check codes,” Electron Lett., vol. 32, pp. 1645–1646, Aug. 1996.
[23] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.
[24] S. Lin and D. J. Costello, Error Control Coding. PEARSON Prentice Hall, 2004.
[25] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.
[26] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.
[27] B. Vasic, A. Cvetkovic, S. Sankaranarayanan, and M. Marcellin, “Adaptive error protection low-density parity-check codes for joint source-channel coding schemes,” in Proceedings International Symposium of Information Theory (ISIT), 2003, p. 267.
[28] X. Yang, D. Yuan, P. Ma, and M. Jiang, “New research on unequal error protection (uep) property of irregular LDPC codes,” in Consumer Communications and Networking Conference, 2004, pp. 361–363.
[29] Y. Li and W. E. Ryan, “Bit-reliability mapping in LDPC-coded modulation systems,” IEEE Commun. Lett., vol. 9, no. 1, pp. 1–3, 2005.
[30] M. Lunglmayr and J. Berkmann, “Optimized mapping schemes for LDPC coded higher order modulated QAM transmission,” EUROCAST, pp. 952–959, 2007.
[31] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.
[32] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.
[33] W. E. Ryan and S. Lin, Channel Codes. Cambridge Univ., 2009.
[34] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2141–2155, Sep. 2003.
[35] G. Durisi, L. Dinoi, and S. Benedetto, “eIRA codes for coded modulation systems,” in IEEE International Conference on Communications (ICC), 2006, pp. 1125–1130.
[36] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 271–280.
[37] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.
[38] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2033–2051, May 2006.
[39] Z. Cheng, J. Castura, and Y. Mao, “On the design of raptor codes for binary-input Gaussian channels,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3269–3277, Nov. 2009.
[40] R. J. Barron, C. K. Lo, and J. M. Shapiro, “Global design methods for raptor codes using binary and higher-order modulations,” in IEEE Military Communications Conference, 2009, pp. 1–7.
[41] S.-H. Kuo, Y. L. Guan, S.-K. Lee, and M.-C. Lin, “A design of physical-layer raptor codes for wide SNR ranges,” IEEE Commun. Lett., vol. 18, no. 3, pp. 491–494, Mar. 2014.
[42] S.-H. Kuo, Some Designs of Physical-Layer Raptor Codes. National Taiwan Univ., 2015.
[43] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by iterative decoding of linear codes with low-density generator matrix,” IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊