|
Chapter 2 [C2-1] W. R. Hamilton, “Elements of Quaternion”, Longmans, Green, and Co., London, 1866. [C2-2] I. Niven, “The roots of a quaternion”, Amer. Math. Monthly, vol.49, pp.386-388, 1942. [C2-3] T. Bulow, “Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images”, Ph.D. Thesis, Christian-Albrechts Univ. of Kiel, Aug. 1999, available from http://www.cis.upenn.edu/~thomasbl. [C2-4] Stephen J. Sangwine and Nicolas Le Bihan, “Quaternion Polar Representation with a Complex Modulus and Complex Argument Inspired by the Cayley-Dickson Form”, Advances in Applied Clifford Algebras, vol.20, no.1, pp.111-120, Mar. 2010. Chapter 3 [C3-1] Schtte, H.-D., Wenzel, J., “Hypercomplex numbers in digital signal processing”, IEEE International Symposium on Circuits and Systems, vol.2, pp.1557-1560, 1990. [C3-2] Ueda, K., Takahashi, S.-i., “Digital Filters with Hypercomplex Coefficients”, IEEE International Symposium on Circuits and Systems, vol.1, pp.479-482, May. 1993. [C3-3] T. A. Ell, “Quaternion-Fourier Transforms for Analysis of Two-Dimensional Linear Time-Invariant Partial Differential Systems”, Proceedings of the 32nd Conferences on Decision and Control, pp.1830-1841, Dec. 1993. [C3-4] Clyde M. Davenport, “A communitative Hypercomplex Algebra with Associated Function Theory”, In R. Ablamoicz, editor, Clifford Algebra with Numeric and Symbolic Computations, pp.213-227, Birkhauser, Boston, 1996. [C3-5] M. Felsberg, “Signal Processing Using Frequency Domain Methods on Clifford Algebra”, Master thesis, supervised by Th. Bulow, 1998. [C3-6] M. Felsberg, T. Bulow, and G. Sommer, “Geometric Computing with Clifford Algebra”, G. Sommer (Ed.), Springer Series in Information Sciences, © Springer-Verlag, Berlin, 2001. [C3-7] I. M. Yaglom, “Complex Numbers in Geometry”, Academic Press, New York, 1968. [C3-8] J. Rooney, “On the three types of complex number and planar transformations”, Environment and Planning B5, pp.89-99, 1978. Chapter 4 [C4-1] T. A. Ell, “Hypercomplex Spectral Transform”, Ph.D. Thesis, Univ. of Minnesota, 1992. [C4-2] Stephen J. Sangwine, “Fourier transforms of color images using quaternion, or hypercomplex, numbers”, Electronics Letters, vol. 32, no. 21, pp.1979-1980, Oct. 1996. [C4-3] M. Felsberg, “Fast Quaternionic Fourier Transform”, Tech. Report, Christian-Albrechts Univ. of Kiel, Cognitive Systems Group, Inst. of Computer Science and Applied Mathematics, Sep. 1997, available from http://www.informatik.uni-kiel.de/ ~tb1/index.hml. [C4-4] J. H. Chang, “Applications of Quaternions and Reduced Biquaternions for Digital Signal and Color Image Processing”, Ph.D. Thesis, National Taiwan University, May. 2004. [C4-5] S. J. Sangwine and T. A. Ell, “The discrete Fourier transform of a color image”, in J. M. Blackledge and M. J. Turner, editors, “ Image Processing II Mathematical Methods, Algorithms and Applications”, pp.430-441, Chichester 2000. [C4-6] S. J. Sangwine, “ Color image edge detector based on quaternion convolution”, Electron, Lett., vol.34, no.10, pp.969-971, May 1998. [C4-7] C.J. Evans, S. J. Sangwine, and T. A. Ell, “Hypercomplex color-sensitive smoothing filters”, IEEE International Conference on Image Processing, vol.1, pp.541-544, Sep. 2000. [C4-8] C.J. Evans, T. A. Ell, and S. J. Sangwine, “Color-sensitive edge detection using hypercomplex filters”, Proceeding EUSIPCO 2000, Tampere, Finland, Sep. 2000. [C4-9] S. C. Pei and C. M. Cheng, “Color image processing by using binary quaternion-moment-preserving threshold technique”, IEEE Trans. Image Processing, vol.8, no.5, pp.614-628, 1999. [C4-10] S. C. Pei and C. M. Cheng, “A novel block truncation coding of color images using a quaternion-moment-preserving principle”, IEEE Trans. Commun., vol.45, no.5, pp.583-595, 1997. [C4-11] T. A. Ell and S. J. Sangwine, “Decomposition of 2D hypercomplex Fourier transforms into pairs of complex Fourier transforms”, EUSIPCO 2000, pp.151-154. Chapter 5 [C5-1] B.W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust, Speech, Signal Process., vol. 30, pp. 25-31, 1982. [C5-2] F. A. Grunbaum, “The eigenvectors of the discrete Fourier transform: A version of the Hermite functions,” J. Math. Anal. Appl., vol. 88, pp.355-363, 1982. [C5-3] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices,” IEEE Trans. Signal Process., vol. 54, no.10, pp.3815-3828, 2006. [C5-4] B. Santhanam and T. S. Santhanam, “On discrete Gauss– Hermite functions and eigenvectors of the discrete Fourier transform,” J. Signal. Process., vol. 88, pp.2738-2746, Nov. 2008. [C5-5] S. C. Pei, J. J. Ding, K. W. Chang, “Eigenfunctions, eigenvalues, and fractionalization of the quaternion and biquternion Fourier transforms,” EUSIPCO 2010, pp.1874-1878, Aug. 2010. [C5-6] S. Sangwine, “The discrete quaternion Fourier transform,” IEE Conf., vol. 2, pp. 790-793, 1997. [C5-7] S. C. Pei, J. H. Chang, and J. J. Ding, “Commutative reduced biquaterinions and their Fourier transform for signal and image processing applications,” IEEE Trans. Signal Processing, vol. 52, no.7, pp.2012-2031, Jul. 2004. [C5-8] W. R. Hamilton, “Elements of quaternion,” Longmans, Green and Co., London, 1866. [C5-9] C. Moxey, S. Sangwine, T. A. Ell, “Hypercomplex correlation techniques for vector images,” IEEE Trans. Signal Processing, vol. 51, no.7, pp.1941-1953, Jul. 2003. [C5-10] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT,” IEEE Trans. on Signal Processing, vol. 49, no.11, pp.2783-2797, 2001. [C5-11] E. Bayro-Corrochano, “The theory and use of the quaternion wavelet transform,” Journal of Mathematical Imaging and Vision, vol. 24, pp.19-35, 2006. [C5-12] J. Zhou, Y. Xu, and X. Yang, “Quaternion wavelet phase based stereo matching for uncalibrated Images,” Pattern Recognition Letters, vol. 28, pp-1509-1522, 2007. [C5-13] G. Metikas and S. Olhede, “Multiple multidimensional morse wavelets,” IEEE Trans. on Signal Processing, vol. 51, no.7, pp.1941-1953, Jul. 2003. [C5-14] W. Chan, H. Choi, and R. Baraniuk, “Coherent multiscale image processing using dual-tree quaternion wavelets,” IEEE Trans. Image Processing, vol. 17, no.7, pp.1069-1082, Jul. 2008. [C5-15] W. Chan, H. Choi, and R. Baraniuk, “Directional hypercomplex wavelets for multidimensional signal analysis and processing,” Proc. IEEE int. Conf. Acoust, Speech, Signal Processing, vol. 3, pp.III-996-III-999, May. 2004. [C5-16] T. Tsui, X. P. Zhang, and D. Androutsons, “Color image watermarking using multidimensional Fourier transforms,” IEEE Trans. Inf. Forensics Security, vol. 3, no.1, pp.16-28, Mar.2008. [C5-17] W. R. Hamilton, “Lectures on quaternions,” Article 669, 1853. [C5-18] H. D. Schtte, J. Wenzel, “Hypercomplex numbers in digital signal processing,” IEEE International Symposium on Circuits and Systems, vol. 2, pp.1557-1560, 1990. [C5-19] X. F. Gong, Z. W. Liu, and Y. G. Xu, “Quad-quaternion MUSIC for DOA estimation using electromagnetic vector sensors,” EURASIP Journal on Advances in Signal Processing, vol. 2008. [C5-20] S. C. Pei, J. H. Chang, J. J. Ding, M. Y. Chen, “Eigenvalues and singular value decompositions of reduced biquaternion matrices,” IEEE Trans. Cirt. and Sys. I, vol. 55, no.9, pp.2673-2685, 2008. [C5-21] E. D. Di Claudio, G. Jacovitti, and A. Laurenti, “Maximum likelihood orientation estimation of 1-D Pattern in Laguerre-Gauss Subspaces,” IEEE Trans. Image Processing, vol. 19, no.5, pp.1113-1125, May. 2010. [C5-22] D. V. Sorokin, M. M. Mizotin, and A. S. Krylov, “Gauss-Laguerre keypoints extraction using fast Hermite projection method,” in lm. Anal. And Rec., ser. LNCS, A. Campilho and M. Kamel, Eds. vol. 6753, pp. 284-293, Springer, 2011. [C5-23]Quaternion toolbox for Matlab (QTFM toolbox). Available online at http://qtfm.sourceforge.net/ Chapter 6 [C6-1] Carlo Tomasi, Roberto Manduchi, “Average Filtering for Gray and Color Images”, Proceedings of the ICCV, 1998. [C6-2] K. Murase et al., “An Anisotropic Diffusion Method for Denoising Dynamic Susceptibility Contrast-enhanced Magnetic Resonance Images”, Phys Med Biol., Oct 46(10), pp. 2713-2723, 2001. [C6-3] A. Buades et al., “A Non-local Algorithm for Image Denoising”, Computer Vision and Pattern Recognition, 2005. [C6-4] Kuo, Chung-Ming and Kang, Wei-Chung, “Unsupervised Texture Segmentation Using Color Quantization and Color Feature Distributions Image Processing”, ICIP, 2005. [C6-5] Wang, Jung-Hua, “Image Segmentation Based on Region Growing and Edge Detection Systems, Man, and Cybernetics”, IEEE SMC Conference Proceedings, 1999. [C6-6] A. Koschan, M. Abidi,“Detection and classification of edges in color images: A review of vector valued techniques”, IEEE Signal Processing Magazine, pp.64-73, Jan. 2005. [C6-7] X. Chen, H. Chen,“A novel color edge detection algorithm in RGB color space”,In: Proc. of IEEE 10th International Conference on Signal Processing, pp. 793–796, 2010. [C6-8] A.N. Evans, X.U. Liu,“A morphological gradient approach to color edge detection”, IEEE Transactions on Image Processing, vol.15, no.6, pp.1454-1462, 2006. [C6-9] E. Nezhadarya, R.K. Ward,“A new scheme for robust gradient vector estimation in color images”, IEEE Transactions on Image Processing, vol.20, no.8, pp.2011-2220, 2011. [C6-10] A. Mittal, S. Sofat, and E. Hancock,“ An efficient scheme for color edge detection in uniform color space”, AIS’12 Procedings of the Third international conference on Autonomous and Intelligent Systems, pp.260-267, 2012. [C6-11] L. Rudin, S. Osher, and E. Fatemi,“Nonlinear total variation based noise removal algorithms”, Physica D: Nonlinear Phenomena, vol.60, no.1-4, pp.259-268, 1992. [C6-12] Y. Meyer, “Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures”, vol. 22. American Mathematical Society., 2001. [C6-13] J. F. Aujol, G. Gilboa, T. F. Chan, and S. Osher, “Structure-texture image decomposition-modeling, algorithms, and parameter selection”, International Journal of Computer Vision, vol.67, no.1, pp.111-136, 2006. [C6-14] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving decompositions for multi-scale tone and detail manipulation”, ACM Trans. Graph. 27, 3, 2008. [C6-15] S. Paris. And F. Durand, “A fast approximation of the bilateral filter using a signal processing approach”, ECCV(4), pp. 568-580, 2006. [C6-16] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale image decomposition based on local extrema”, ACM Trans. Graph. 28, 5, 2009. [C6-17] M. Kass, and J. Solomon, “Smoothed local histogram filters”, ACM Trans. Graph. 29, 4., 2010. [C6-18] N.E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung and H.H. Liu, “The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis”, Proc. Roy. Soc. London A, Vol. 454, pp. 903–995, 1998. [C6-19] G. Rilling, P. Flandrin and P. Goncalves, “Empirical Mode Decomposition As a Filter Bank”, IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004. [C6-20] G. Rilling, P. Flandrin and P. Goncalves, “Detrending and Denoising with Empirical Mode Decomposition”, IEEE Signal Processing, pp.1581-1584, 2004. [C6-21] G. Rilling, P. Flandrin and P. Goncalves, “On Empirical Mode Decomposition and Its Algorithms”, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 2003. [C6-22] A. Linderhed, “Compression by Image Empirical Mode Decomposition”, Proceedings of International Conference on Image Processing”, ICIP-05 Genoa (I), pp. 553-556. Sep. 2005. [C6-23] A. Linderhed, “2D Empirical Mode Decompositions in the Spirit of Image Compression”,Wavelet and Independent Component Analysis Applications IX, SPIE Proceedings, vol. 4738, pp.1-8, Apr. 2002. [C6-24] J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang and Ph. Bunel, “Image Analysis by Bidimensional Empirical Mode Decomposition”, Image and Vision Computing, Vol.21, Issue 12, pp.1019-1026, Nov. 2003. [C6-25] J. C. Nunes, S. Guyot et al., “Texture Analysis Based on Local Analysis of the Bidimensional Empirical Mode Decomposition”, Machine Vision and Applications 16, pp.177-188, 2005. [C6-26] L. Lin, Y. Wang, and H. Zhou, “Iterative Filtering as an Alternative Algorithm for Empirical Mode Decomposition,”Advances in Adaptive Data Analysis, vol. 1, no. 4, pp. 543-560, 2009. [C6-27] W. R. Hamilton, “Elements of Quaternion,” Longmans, Green and Co., London, 1866. [C6-28] C. Moxey, S. Sangwine, T. Ell, “Hypercomplex Correlation Techniques for Vector Images,” IEEE Transactions on Signal Processing, vol.51, no.7, pp.1941-1953, Jul. 2003. [C6-29] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient Implementation of Quaternion Fourier Transform, Convolution, and Correlation by 2-D complex FFT,” IEEE Transactions on Signal Processing, vol.49, no.11, pp.2783-2797, 2001. [C6-30] E. Bayro-Corrochano, “The Theory and Use of the Quaternion Wavelet Transform,” Journal of Mathematical Imaging and Vision, vol.24, pp.19-35, 2006. [C6-31] J. Zhou, Y. Xu, and X. Yang, “Quaternion Wavelet Phase Based Stereo Matching for Uncalibrated Images,” Pattern Recognition Letters, vol.28, pp-1509-1522, 2007. [C6-32] G. Metikas and S. Olhede, “Multiple Multidimensional Morse Wavelets,” IEEE Transactions on Signal Processing, vol.51, no.7, pp.1941-1953, Jul. 2003. [C6-33] W. Chan, H. Choi, and R. Baraniuk, “Coherent Multiscale Image Processing Using Dual-tree Quaternion Wavelets,” IEEE Transcations on Image Processing, vol.17, no.7, pp.1069-1082, Jul. 2008. [C6-34] W. Chan, H. Choi, and R. Baraniuk, “Directional Hypercomplex Wavelets for Multidimensional Signal Analysis and Processing,” Proc. IEEE int. Conf. Acoust, Speech, Signal Processing, vol.3, pp.III-996-III-999, May. 2004. [C6-35] T. Tsui, X.-P. Zhang, and D. Androutsons, “Color Image Watermarking Using Multidimensional Fourier Transforms,” IEEE Transactions on Inf. Forensics Security, vol.3, no.1, pp.16-28, Mar.2008. [C6-36] W. K. Pratt, “Digital Image Processing,” Wiley, N.Y., 1991. Chapter 7 [C7-1] K. Nomizu and S. Sasaki, “Affine Differential Geometry,” Cambridge University Press, 1994. [C7-2] P. Thevenaz, et.al, “A Pyramid Approach to Subpixel Registration Based on Intensity,” IEEE Transactions on Image Processing, vol.7, issue 1, Jan 1988. [C7-3] B. Zitová and J. Flusser, “Image Registration Methods: A Survey,” vol.21, issue 11, pp. 977-1000, Oct 2003. [C7-4] B. S. Reddy, “An FFT-based Technique for Translation, Rotation, and Scale-invariant Image Registration,” IEEE Transactions on Image Processing, vol.5, issue 8, pp.1266-1271, Aug 1996. [C7-5] Alan W. Paeth, “A Fast Algorithm for General Raster Rotation,” Grapics Interface 1986. [C7-6] Robert W. Cox and Raoqiong Tong, “Two- and Three-Dimensional Image Rotation Using the FFT, ” IEEE Transactions on Image Processing, vol.8, no.9, pp.1297-1299, Aug 1999. [C7-7] Michael Unser et.al, “Convolution-Based Interpolation for Fast High-Quality Rotation of Images, ” IEEE Transactions on Image Processing, vol.4, no.10, pp.1371-1381, Oct. 1995. [C7-8] P. Hanrahan, “Three-pass Affine Transforms for Volume Rendering,” VVS ''90 Proceedings of the 1990 workshop on Volume visualization, pp. 71-78, 1990. [C7-9] Xilin Chen,et.al, “Automatic Detection of Signs with Affine Transformation,” Applications of Computer Vision, 2002. (WACV 2002)., pp. 32-36, 2002. [C7-10] R.E. Barnhill,G. Birkhoff, and W.J. Gordon, “ Smooth Interpolation in Triangles,” Journal of Approximation Theory, vol. 8, issue 2, pp.114-128, June 1973. [C7-11] W. R. Hamilton, “Elements of Quaternion,” Longmans, Green and Co., London, 1866. [C7-12] C. Moxey, S. Sangwine, T. Ell, “Hypercomplex Correlation Techniques for Vector Images,” IEEE Transactions on Signal Processing, vol.51, no.7, pp.1941-1953, Jul. 2003. [C7-13] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient Implementation of Quaternion Fourier Transform, Convolution, and Correlation by 2-D complex FFT,” IEEE Transactions on Signal Processing, vol.49, no.11, pp.2783-2797, 2001. [C7-14] E. Bayro-Corrochano, “The Theory and Use of the Quaternion Wavelet Transform,” Journal of Mathematical Imaging and Vision, vol.24, pp.19-35, 2006. [C7-15] J. Zhou, Y. Xu, and X. Yang, “Quaternion Wavelet Phase Based Stereo Matching for Uncalibrated Images,” Pattern Recognition Letters, vol.28, pp-1509-1522, 2007. [C7-16] G. Metikas and S. Olhede, “Multiple Multidimensional Morse Wavelets,” IEEE Transactions on Signal Processing, vol.51, no.7, pp.1941-1953, Jul. 2003. [C7-17] W. Chan, H. Choi, and R. Baraniuk, “Coherent Multiscale Image Processing Using Dual-tree Quaternion Wavelets,” IEEE Transcations on Image Processing, vol.17, no.7, pp.1069-1082, Jul. 2008. [C7-18] W. Chan, H. Choi, and R. Baraniuk, “Directional Hypercomplex Wavelets for Multidimensional Signal Analysis and Processing,” Proc. IEEE int. Conf. Acoust, Speech, Signal Processing, vol.3, pp.III-996-III-999, May. 2004. [C7-19] T. Tsui, X.-P. Zhang, and D. Androutsons, “Color Image Watermarking Using Multidimensional Fourier Transforms,” IEEE Transactions on Inf. Forensics Security, vol.3, no.1, pp.16-28, Mar.2008. [C7-20] S. C. Pei and Y. C. Lai, “ Closed Form Variable Fractional Time Delay Using FFT,” IEEE Signal Processing Letters, vol.19, issue 5, pp.299-302, 2012. Chapter 8 [C8-1] D. Alleysson, S. Susstrunk, and J. Herault, “Linear demosaicing inspired by the human visual system,” IEEE Trans. Image Process., 14(4):439-449, 2005. [C8-2] E. Dubois, “Frequency-domain methods for demosaicking of Bayersampled color images,” IEEE Signal Process. Lett., 12:847-850, 2005. [C8-3] J.W. Glotzbach, R.W. Schafer, and K. Illgner, “A method of color filter array interpolation with alias cancellation properties,” Proc. IEEE Int. Conf. Image Processing, vol. 1, 2001, pp. 141-144. [C8-4] B.K. Gunturk, Y. Altunbasak, and R.M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 997-1013, Sept. 2002. [C8-5] B.K. Gunturk, J. Glotzbach, Y. Altunbask, R.W. Schafer, and R.M., “Mersereau. Demosaicing: Color filter array interpolation,” IEEE Signal Process. Mag., 22(1):44-54, 2005. [C8-6] P. Longere, X. Zhang, P.B. Delahunt, and D.H., “Brainard. Perceptual assessment of demosaicing algorithm performance,” Proc. IEEE, vol. 90, no.1, pp. 123-132, Jan. 2002. [C8-7] R. Ramanath, W.E. Snyder, G.L. Bilbro, and W.A. Sander III, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging, vol. 11, no. 3, pp.306-315, July 2002. [C8-8] T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still cameras suitable for a 32-bit MCU,” IEEE Trans. Consum. Electron., vol. 44, no. 4, pp. 1342-1352, Nov. 1998. [C8-9] Eric Dubois, “Frequency-Domain Methods for Demosaicking of Bayer- Sampled Color Images,” IEEE Signal Processing Letters, vol.12, no.12 dec. 2005. Chapter 9 [C9-1] P. E. Trahanias and A. N. Venetsanopoulos, “Color Image Enhancement Through 3-D Histogram Equalization,” in Proc. 15th IAPR Int. Conf. Pattern Recognition, vol. 1, pp. 545–548, Aug.-Sep., 1992. [C9-2] N. Bassiou and C. Kotropoulos, "Color Image Histogram Equalization by Absolute Discounting Back-off," Computer Vision and Image Understanding, vol. 107, no. 1-2, pp.108-122, Jul.-Aug., 2007. [C9-3] Ji-Hee Han, Sejung Yang, Byung-Uk Lee, "A Novel 3-D Color Histogram Equalization Method with Uniform 1-D Gray Scale Histogram", IEEE Trans. on Image Processing, vol. 20, No. 2, pp. 506-512, Feb., 2011. [C9-4] K. Barnard et al., “A Comparison of Computational Color Constancy Algorithms Part II: Experiments with Image Data,” IEEE Trans. Imag. Process., pp. 985-996, 2002. [C9-5] G. Buchsbaum, “A Spatial Processor Model for Object Color Perception,”, J. Frank. Inst., vol. 310, 1980. [C9-6] E. H. Land, “The Retinex Theory of Color Vision,” Sci. Am. vol. 237, no.6, pp.108-128, 1977. [C9-7] G. D. Finlayson and E. Trezzi, “Shades of Gray and Color Constancy,” in Proc. IS&T/SID 12th Color Imaging Conf., pp. 37-41, 2004. [C9-8] D. Forsth, “A Novel Algorithm for Color Constancy,” Int. J. Comput. Vis. vol.5, no.1, pp.5-36, 1990. [C9-9]. A. Gijsenij, T. Gevers, and J. van de Weijer, “Generalized Gamut Mapping using Image Derivative Structures for Color Constancy,” Int. J. Comput. Vis., 2008. [C9-10] Javier Vazquez-Corral and Marcelo Bertalmfo, “Color Stabilization Along Time and Across Shots of the Same Scene, for One or Serveral Cameras of Unknown Specifications,” IEEE Trans. on Image Processing, vol.23, no.10, Oct., 2014. [C9-11] T. W. Huang and H. T. Chen, “Landmark-based Sparse Color Representations for Color Transfer,” in Proc. IEEE 12th Int. Conf. Comput. Vis., pp.199-204, 2009. [C9-12] Lianghai Jin, Hong Liu, Xiangyang Xu, and Enmin Song, “Quaternion-Based Implulse Noise Removal from Color Video Sequences,” IEEE Transactions on Circuit and System for Video Technology, vol.23, no.5, May. 2013. Chapter 10 [C10-1] P. E. Trahanias and A. N. Venetsanopoulos, “Color Image Enhancement Through 3-D Histogram Equalization,” in Proc. 15th IAPR Int. Conf. Pattern Recognition, vol. 1, pp. 545–548, Aug.-Sep., 1992. [C10-2] N. Bassiou and C. Kotropoulos, "Color Image Histogram Equalization by Absolute Discounting Back-off," Computer Vision and Image Understanding, vol. 107, no. 1-2, pp.108-122, Jul.-Aug., 2007. [C10-3] Ji-Hee Han, Sejung Yang, Byung-Uk Lee, "A Novel 3-D Color Histogram Equalization Method with Uniform 1-D Gray Scale Histogram", IEEE Trans. on Image Processing, vol. 20, No. 2, pp. 506-512, Feb., 2011. [C10-4] K. Barnard et al., “A Comparison of Computational Color Constancy Algorithms Part II: Experiments with Image Data,” IEEE Trans. Imag. Process., pp. 985-996, 2002. [C10-5] G. Buchsbaum, “A Spatial Processor Model for Object Color Perception,”, J. Frank. Inst., vol. 310, 1980. [C10-6] E. H. Land, “The Retinex Theory of Color Vision,” Sci. Am. vol. 237, no.6, pp.108-128, 1977. [C10-7] G. D. Finlayson and E. Trezzi, “Shades of Gray and Color Constancy,” in Proc. IS&T/SID 12th Color Imaging Conf., pp. 37-41, 2004. [C10-8] D. Forsth, “A Novel Algorithm for Color Constancy,” Int. J. Comput. Vis. vol.5, no.1, pp.5-36, 1990. [C10-9]. A. Gijsenij, T. Gevers, and J. van de Weijer, “Generalized Gamut Mapping using Image Derivative Structures for Color Constancy,” Int. J. Comput. Vis., 2008. [C10-10] Javier Vazquez-Corral and Marcelo Bertalmfo, “Color Stabilization Along Time and Across Shots of the Same Scene, for One or Serveral Cameras of Unknown Specifications,” IEEE Trans. on Image Processing, vol.23, no.10, Oct., 2014. [C10-11] T. W. Huang and H. T. Chen, “Landmark-based Sparse Color Representations for Color Transfer,” in Proc. IEEE 12th Int. Conf. Comput. Vis., pp.199-204, 2009. [C10-12] Y. Fan et.al, “Bottom-Up Saliency Detection Model Based on Human Visual Sensitivity and Amplitude Spectrum,” IEEE Trans. Multimedia, vol. 14, issue.1, pp.187-198, Jul. 2012. [C10-13] C. Moxey, S. Sangwine, T. A. Ell, “Hypercomplex correlation techniques for vector images,” IEEE Trans. Signal Processing, vol. 51, no.7, pp.1941-1953, Jul. 2003. [C10-14] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT,” IEEE Trans. on Signal Processing, vol. 49, no.11, pp.2783-2797, 2001. [C10-15] E. Bayro-Corrochano, “The theory and use of the quaternion wavelet transform,” Journal of Mathematical Imaging and Vision, vol. 24, pp.19-35, 2006. [C10-16] J. Zhou, Y. Xu, and X. Yang, “Quaternion wavelet phase based stereo matching for uncalibrated Images,” Pattern Recognition Letters, vol. 28, pp-1509-1522, 2007. [C10-17] G. Metikas and S. Olhede, “Multiple multidimensional morse wavelets,” IEEE Trans. on Signal Processing, vol. 51, no.7, pp.1941-1953, Jul. 2003. [C10-18] W. Chan, H. Choi, and R. Baraniuk, “Coherent multiscale image processing using dual-tree quaternion wavelets,” IEEE Trans. Image Processing, vol. 17, no.7, pp.1069-1082, Jul. 2008. [C10-19] W. Chan, H. Choi, and R. Baraniuk, “Directional hypercomplex wavelets for multidimensional signal analysis and processing,” Proc. IEEE int. Conf. Acoust, Speech, Signal Processing, vol. 3, pp.III-996-III-999, May. 2004. [C10-20] T. Tsui, X. P. Zhang, and D. Androutsons, “Color image watermarking using multidimensional Fourier transforms,” IEEE Trans. Inf. Forensics Security, vol. 3, no.1, pp.16-28, Mar.2008.
|