跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃彥博
研究生(外文):Yan-Bo Huang
論文名稱:使用時限脈波成形之區塊調變
論文名稱(外文):Block Modulation with Time-limited Pulse Shaping
指導教授:鐘嘉德鐘嘉德引用關係
指導教授(外文):Char-Dir Chung
口試委員:李志鵬李穎古孟霖王森弘
口試委員(外文):Chih-Peng LiYing Li.Meng-Lin KuSen-Hung Wang
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:時限脈衝區塊調變預編碼正交峰均功率通道容量
外文關鍵詞:time-limited pulse shapingblock modulationprecodingorthogonalpeak-to-average power ratiocapacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了達到最佳的功率效率,大多通訊系統採用符合奈奎斯零符元間干擾準則的有限頻寬脈衝進行傳輸。然而在實際的通訊系統中,有限頻寬脈衝在傳輸前必須在時間上先被截斷成時限脈衝,這無法避免得會產生符元間干擾。並且,在時域被截斷後的脈衝所使用的頻寬會超過奈奎斯頻寬,使得頻譜效率相對於奈奎斯脈衝下降。在本論文中,我們發展時限脈衝成形之區塊調變來達到能超過可實現的根餘弦脈衝的頻譜效率,甚至能逼近理想奈奎斯脈衝的頻譜效率,並且擁有和理想奈奎斯脈衝一樣的最佳功率效益,同時因為使用時限脈衝,所以能避免時間截斷所造成的符元間干擾。我們找出能達到功率頻譜旁波快速衰減的時限脈波限制並且設計出符合此限制的時限脈衝家族。同時,我們找出能在給定時限脈波下維持訊號正交性的預編碼條件,這能夠使系統達到最佳功率效率並且讓接收器的解碼維持在低複雜度。此外,我們也設計出能夠降低峰均功率比和壓抑特定頻帶功率且同時維持正交性的預編碼。根據我們的分析,設計出來的正交預編碼能夠在平均功率限制下達到最大通道容量。為了理論完整性,我們也考慮頻限脈波成形之區塊調變。為了幫助分析頻限脈波成形之區塊調變,我們提出了頻譜特徵值分布理論來連結脈衝成形和它對應的轉移矩陣的特徵值。

In order to achieve the optimal power efficiency, most communication systems adopt band-limited pulse shaping satisfying the Nyquist zero inter-symbol-interference (ISI) criterion.
However, in practice, a band-limited pulse must be truncated in the time domain to a few symbol time duration before a transmission, which inevitably introduces ISI in the truncated transmitted waveform.
Moreover, after the truncation, the pulse will occupy more than the Nyquist bandwidth and thus the spectral efficiency will degrade with respect to the Nyquist pulsed-modulation.
In this thesis, block transmission of time-limited pulse shaping will be developed in order to achieve a high spectral efficiency which can be made arbitrary close to that offered by the ideal Nyquist-pulsed modulation and realizable RRC-pulsed modulation, and provide the same power efficiency (error performance) which is equivalent to that offered by the ideal Nyquist-pulsed modulation, while avoids ISI introduced by the truncation by adopting a time-limited pulse.
Specifically, constraints on time-limited pulse are developed to provide desirable power spectrum with a fast sidelobe envelope decaying in the frequency domain and the corresponding pulse family are also proposed.
Constraint on precoder of block transmission is developed in conjunction with the prescribed time-limited pulse to guarantee the orthogonality of signaling which is not only able to achieve the best power efficiency which is equivalent to that offered by the ideal Nyquist-pulsed modulation but also maintain decoding complexity low.
Furthermore, precoder is designed to reduce peak-to-average power ratio(PAPR) and suppress specific band power while maintaining signaling orthogonal.
Based on our analysis, the capacity achieved by the proposed orthogonal precoder is proved to be optimal in the sense that the capacity is maximized subject to an average power constraint.
Additionally, block modulation system with band-limited pulse shaping is proposed for the theory completeness.
To help the analysis of the block modulation system with band-limited pulse shaping, the spectrum eigenvalues distribution theorem is proposed to relate a pulse shaping to its eigenvalues distribution of the corresponding transfer matrix.

Abstract i
List of Figures v
List of Tables ix
1 Introduction 1
1.1 Review on the Nyquist Signaling . . . . . . . . . . . . . . . . . . . . 1
1.2 Review on the Partial-Response Signaling . . . . . . . . . . . . . . . 4
1.3 Review on the Block Modulation . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Motivation, Overview, and Contributions . . . . . . . . . . . 9
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Signal and System Models 13
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Analog and Digital Filter Design 19
3.1 Analog Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Fast Sidelobe Decaying Constraint . . . . . . . . . . . . . . . 19
3.1.2 Design One . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Design Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Design Three . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Digital Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Orthogonality Design . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Specific Band Power Suppression Design . . . . . . . . . . . 31
3.2.3 PAPR Reduction Design . . . . . . . . . . . . . . . . . . . . . 34
3.3 Analog and Digital Filter Design Summary . . . . . . . . . . . . . . 36
4 Transceiver Model and Capacity 39
4.1 Transceiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Block Modulation with Band-Limited Pulse Shaping . . . . . . . . . 50
5 Numerical and Simulation Results 55
5.1 Power Spectral Compactness Characteristics . . . . . . . . . . . . . 55
5.2 Spectral and Power Efficiencies Characteristics . . . . . . . . . . . . 61
5.3 PAPR Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Conclusion 67
A Derivation of the Closed Form of the Anaolg Filter Matrix A 69
B On the Positive Definiteness of the Analog Filter Matrix A 71
C Derivation of the Procedure A 73
D Proof of the Spectrum Eigenvalues Distribution Theorem 75
E Alternative Derivation of Capacity 77
Bibliography 81

[1] W. R. Bennett. “Introduction to Signal Transmission”.In: (1970).
[2] Char-Dir Chung andWei-Chang Chen. “Orthogonal Multirate Modulation”.In: IEEE Transactions on Communications 60 (Jan. 2012), pp. 30–36.
[3] Thomas M. Cover and Joy A. Thomas. “Elements of Information Theory 2nd Edition”. In: (2006).
[4] G. H. Golub and C. F. Van Loan. “Matrix Computations”. In: (1996).
[5] I. S. Gradshteyn and I. M. Ryzhik. “Table of Integrals, Series, and Products, 5th ed”. In: (1994).
[6] R. M. Gray. “Toeplitz and circulant matrices: A review”. In: (2006). URL: http://ee.stanford.edu/~gray/toeplitz.pdf.
[7] R. A. Horn and C. R. Johnson. “Matrix Analysis”. In: (1985).
[8] P. Kabal and S. Pasupathy. “Partial-Response Signaling”. In: IEEE Transactions on Communications (Sept. 1975), pp. 921–934.
[9] Yuan-Pei Lin, See-May Phoong, and P. P. Vaidyanathan. “Filter Bank Transceivers for OFDM and DMT Systems”. In: (2010).
[10] S. M. Hinedi M. K. Simon andW. C. Lindsey. “Digital Communication Techniques”. In: (1994).
[11] A. V. Oppenheim and R. W. Schafer. “Discrete-Time Signal Processing, 3rd ed.” In: (2010).
[12] H. B. Peek. “Multirate modulation: a bandwidth- and power-efficient modulation scheme”. In: IEEE Transactions on Communications 53 (Oct. 2005), pp. 1679–1687.
[13] John Proakis and Masoud Salehi. “Communication Systems Engineering, 2nd Edition”. In: (2002).
[14] John Proakis and Masoud Salehi. “Digital Communications, 5th Edition”. In: (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top