|
[1]Antweiler, W., and Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of Finance, 59(3), 1259-1294. [2]Zhang, X., Fuehres, H., and Gloor, P. A. (2011). Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Procedia-Social and Behavioral Sciences, 26, 55-62. [3]Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2(1), 1-8. [4]Mao, H., Counts, S., and Bollen, J. (2011). Predicting financial markets: Comparing survey, news, twitter and search engine data. arXiv preprint arXiv:1112.1051. [5]Sprenger, T. O., Tumasjan, A., Sandner, P. G., and Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957. [6]Oliveira, N., Cortez, P., and Areal, N. (2013, September). On the predictability of stock market behavior using stocktwits sentiment and posting volume. InPortuguese Conference on Artificial Intelligence (pp. 355-365). Springer Berlin Heidelberg. [7]Chen, H., De, P., Hu, Y. J., and Hwang, B. H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. Review of Financial Studies, 27(5), 1367-1403. [8]Mao, H., Counts, S., and Bollen, J. (2015, July). Quantifying the effects of online bullishness on international financial markets. In ECB workshop on using Big Data for forecasting and statistics, Frankfurt, Germany. [9]Zhou, Z., Zhao, J., and Xu, K. (2016). Can Online Emotions Predict the Stock Market in China?. arXiv preprint arXiv:1604.07529. [10]PTT Stock Board https://www.ptt.cc/bbs/Stock/index.html [11]NTUSD http://academiasinicanlplab.github.io/ [12]DUTIR Sentiment Dictionary http://ir.dlut.edu.cn/EmotionOntologyDownload [13]Jieba https://github.com/fxsjy/jieba [14]Scikit-learn http://scikit-learn.org/stable/index.html [15]PTT-BOT https://github.com/mbilab/ptt-bot
|