|
[1] Divesh Aggarwal,Daniel Dadush,and Noah Stephens-Davidowitz.Solving the closest vector problem in $2^n$ time-the discrete gaussian strikes again! CoRR, abs/1504.01995, 2015. [2] W.Banaszczyk.New bounds in some transference theorems in th egeometry of numbers.296(4):625{635,1993. [3] D.Dadush,O.Regev,and N.Stephens-Davidowitz. On the Closest Vector Problem with a Distance Guarantee. ArXive-prints, September2014. [4] Lov K.Grover. A Fast quantum mechanical algorithm for database search.1996. [5] Wassily Hoefflding. Probability inequalities for sums of bounded random variables. Journal ofthe American Statistical Association. [6] Paul Kirchner and Pierre-Alain Fouque.Time-memory trade-off for lattice enumeration in a ball. Cryptologye Print Archive,Report2016/222,2016. [7] A.K.Lenstra,H.W.jun.Lenstra,and L aszloLov asz. Factoring polynomials with rational coefficients. Math. Ann. [8] Daniele Micciancio and Chris Peikert. Trapdoors for lattices:Simpler,tighter, faster, smaller. Cryptologye Print Archive, Report2011/501,2011. [9] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. SIAM J.Comput. [10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In Proceedings of the Forty-second ACM Symposiumon Theory of Computing, STOC''10, pages351 [11] P.Q.NguyenandT.Vidick.Sieve algorithms for the shortest vector problem are practical. J.of Mathematical Cryptology,2(2),2008. [12] Oded Regev.New lattice-based cryptographic constructions. J. ACM, November2004. [13] Oded Regev. On lattices,learning with errors, random linear codes, and cryptography.In Proceedings of the Thirty-seventh Annual ACM Symposiumon Theory of Computing, STOC''05,pages84. [14] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2010.
|