跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡榮育
研究生(外文):Jung-Yu Tsai
論文名稱:可撓性腹腔鏡安全感測控制方法於機器人微創手術之應用
論文名稱(外文):Sensory Safety Control of Robotic Flexible Laparoscope for Minimally Invasive Surgery
指導教授:羅仁權羅仁權引用關係
口試委員:王安邦楊燿州
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:80
中文關鍵詞:微創手術腹腔鏡手術安全控制微調追蹤
外文關鍵詞:minimally invasive surgerysafety controlfine tunetracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
腹腔鏡手術是外科手術中較具挑戰性的,腹腔鏡手術為一種微創手術,除了負責執行開刀動作的醫師之外,腹腔鏡的使用需要仰賴另一位助理醫生以手動的方式調整鏡頭位置,這就要外科醫師和助手之間的培訓和高合作工作操作。因此,開始有人使用機器人輔助微創手術,希望藉由機器人的穩定、易操作、不易抖動等特性來幫助手術進行。
然而,機器人輔助微創手術的安全性問題是需要研究和探討。我們使用機器人多關節可撓性腹腔鏡系統(RFLS),研究主要是針對安全性做探討,分為三大類:接觸、微調、手術安全操作。接觸方面,針對腹腔鏡視野外無法看見的情況,當腹腔鏡末端接觸到手術器械或組織時,系統可以調整移動權重並且顯示紅色警示在螢幕上,避免產生出血等危險情況。微調,由於遠端控制的時間延遲,造成醫師操作上很難去微調,我們提出運動分割功能,可以記錄並重複移動的軌跡,並且藉由分割器將移動軌跡切成許多小線段,可以更細部地操作腹腔鏡。手術安全操作方面,當醫師操作此系統時,視野會隨著頭部操作而移動,醫師在執行手術時無法專注在螢幕上,因此,我們提出自動追蹤功能,可以辨識手術器械位置並移動到使用者偏好的中心點位置。實驗結果顯示安全控在17g/cm^2以上能避免不必要的接觸,醫師能對腹腔鏡進行微調操作且誤差小於0.8度,追蹤系統能在安定時間1.5秒內穩定地到達準確的目標。

Laparoscopic surgery remains a challenging procedure. Laparoscopic surgery is a kind of minimally invasive surgery. In addition to the physician performing the surgery, another assistant is required to manipulate the laparoscope. This requires well trained and collaborative actions between the surgeon and the assistant. Therefore, robot-assisted minimally invasive surgery has been introduced due to their stable, easy to operate, and noise removal characteristics.
However, safety issues of robot-assisted minimally invasive surgery have to be studied and discussed. We use a Robotic Flexible Laparoscopic System (RFLS) to explore for three aspects: Contact, Fine Tune, and Safety Operation. First of all, the surgeon cannot see outside the field of view of the laparoscope. When the distal of the laparoscope contacts with surgical instruments or tissue, the system we propose can automatically adjust the weighting and displays a red warning line on the monitor. An-other aspect is that the surgeon has difficulty to perform the fine tune due to the time delay of the remote control. We propose the Motion Split function to record the trajectory of the head motion and split it into small segments so that the surgeon can operate the system delicately. Lastly, the user cannot focus on the monitor because the system is controlled by the surgeon’s head movement. Therefore, we propose an Autonomous Tracking System that identifies surgical instruments and moves the laparoscope to the preferred circle. Experimental results show that the laparoscope automatically avoids unnecessary contact above 17g/cm^2. The surgeon can fine tune the laparoscope and the error is less than 0.1 degrees. Besides, the tracking system can accurately and stably move to the target within 1.5 settling time.


誌謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Introduction to Minimally Invasive Surgery 1
1.1.1 Minimally Invasive Surgery 1
1.1.2 Laparoscopic surgery 2
1.2 Motivation 5
1.3 Objective 6
1.4 Previous Study 7
1.5 Thesis Organization 9
Chapter 2 Research Materials 11
2.1 Hardware 11
2.1.1 Flexible Laparoscope 11
2.1.2 Wireless Gyroscope 12
2.1.3 Maxon® Motor and EPOS 24/1 Controller 13
2.1.4 Zoom mechanism 14
2.1.5 Force Sensing Resistors 15
2.2 Software 17
2.3 Mathematical Models of the Flexible Laparoscope 18
2.3.1 Kinematics Model 18
2.3.2 Inverse Kinematics model 19
Chapter 3 System Architecture 21
3.1 Comparison with Techniques 21
3.2 System Structure: 22
3.3 Information Flow and Overall System Block 25
Chapter 4 Sensory Safety Control 29
4.1 Overall System with Safety Control 29
4.2 Active Safety Control Algorithm 32
4.3 The Weighting Function 33
4.4 Passive Safety Control Algorithm 35
4.5 Mathematical Models of the Flexible Laparoscope 37
4.5.1 Forward Kinematics 37
4.5.2 Inverse Kinematics 39
4.6 Monitor Alarm Notification 40
Chapter 5 Motion Split Function 42
5.1 Control Problem of Fine Tune 42
5.2 Implementation of Motion Split Function 43
Chapter 6 Autonomous Tracking System 46
6.1 Drawbacks of the previous Robotic Flexible Laparoscopic System 46
6.2 System Structure of the Autonomous Tracking System 48
6.3 Digital Image Processing 50
6.4 Autonomous Tracking Control 55
6.5 System Integration 58
Chapter 7 Experiment and Experimental results 61
7.1 Active Safety Control 61
7.2 Passive Safety Control 65
7.3 Discussion 66
7.4 Motion Split Control 66
7.5 Autonomous Tracking System 69
Chapter 8 Conclusions and Contributions 75
Chapter 9 Future Work 76
REFERENCE 77
VITA 80



[1]https://cusm.ca/new-muhc/node/41145
[2]http://www.emedicinehealth.com/laparoscopy/article_em.htm
[3]J. Pransky,” ROBODOC-surgical robot success story,” Industrial Robot: An In-ternational Journal, vol. 24, pp. 231-233, 1997.
[4]I. A. Broeders and J. Ruurda,” Robotics revolutionizing surgery: the intuitive sur-gical da Vinci system,” Industrial Robot: An International Journal, vol. 28, pp. 387-392, 2001.
[5]https://en.wikipedia.org/wiki/Laparoscopic_surgery
[6] P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, "State-of-the-art in force and tactile sensing for minimally invasive surgery," Sensors Journal, IEEE, vol. 8, pp. 371-381, 2008.
[7]S. D''Attanasio, O. Tonet, G. Megali, M. C. Carrozza, and P. Dario, "A semi-automatic handheld mechatronic endoscope with collision-avoidance capa-bilities," in Robotics and Automation, 2000. Proceedings. ICRA''00. IEEE Interna-tional Conference on, 2000, pp. 1586-1591.
[8]M. J. Lum, J. Rosen, T. S. Lendvay, M. N. Sinanan, and B. Hannaford, "Effect of time delay on telesurgical performance," in Robotics and Automation, 2009. ICRA''09. IEEE International Conference on, 2009, pp. 4246-4252.
[9]R. C. Luo, J. Wang, J.-Y. Tsai, K.-M. Lee, and Y.-W. Perng, "Robotic Flexible Laparoscope with position retrieving system for assistive minimally invasive surgery," in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, 2015, pp. 2024-2029.
[10]L. Zhang, R. Khare, E. Wilson, S. X. Wang, C. A. Peters, and K. Cleary, "Robotic assistance for manipulating a flexible endoscope," in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014, pp. 5380-5385.
[11]J. Hsu and S. Payandeh, "Toward tool gesture and motion recognition on a novel minimally invasive surgery robotic system," in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 631-636.
[12]C. Castellini and V. Ravindra, "A wearable low-cost device based upon force-sensing resistors to detect single-finger forces," in 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014, pp. 199-203.
[13]A. A. Gopalai, S. A. Senanayake, and D. Gouwanda, "Determining level of pos-tural control in young adults using force-sensing resistors," IEEE Transactions on Information Technology in Biomedicine, vol. 15, pp. 608-614, 2011.
[14]K.-T. Song and C.-J. Chen, "Autonomous and stable tracking of endoscope in-strument tools with monocular camera," in Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference on, 2012, pp. 39-44.
[15]R. J. Webster and B. A. Jones, "Design and kinematic modeling of constant cur-vature continuum robots: A review," The International Journal of Robotics Re-search, 2010.
[16]A. De Donno, F. Nageotte, P. Zanne, L. Zorn, and M. de Mathelin, "Master/slave control of flexible instruments for minimally invasive surgery," in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013, pp. 483-489.
[17]Y. Chen, J. Liang, and I. W. Hunter, "Modular continuum robotic endoscope de-sign and path planning," in Robotics and Automation (ICRA), 2014 IEEE Interna-tional Conference on, 2014, pp. 5393-5400.
[18]Y. Chen, J. M. Oliveira, and I. W. Hunter, "Two-axis bend sensor design, kine-matics and control for a continuum robotic endoscope," in Robotics and Automa-tion (ICRA), 2013 IEEE International Conference on, 2013, pp. 704-710.
[19]J. Jung, R. S. Penning, N. J. Ferrier, and M. R. Zinn, "A modeling approach for continuum robotic manipulators: effects of nonlinear internal device friction," in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 5139-5146.
[20]S. Voros, J.-A. Long, and P. Cinquin, "Automatic detection of instruments in lap-aroscopic images: A first step towards high-level command of robotic endoscopic holders," The International Journal of Robotics Research, vol. 26, pp. 1173-1190, 2007.
[21]S. Voros, G.-P. Haber, J.-F. Menudet, J.-A. Long, and P. Cinquin, "ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking," IEEE/ASME transactions on mechatronics, vol. 15, pp. 879-886, 2010.
[22]O. Weede, H. Mönnich, B. Müller, and H. Wörn, "An intelligent and autonomous endoscopic guidance system for minimally invasive surgery," in Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 5762-5768.
[23]C. Doignon, F. Nageotte, and M. de Mathelin, "The role of insertion points in the detection and positioning of instruments in laparoscopy for robotic tasks," in In-ternational Conference on Medical Image Computing and Computer-Assisted In-tervention, 2006, pp. 527-534.
[24]http://opencv.org/
[25]https://en.wikipedia.org/wiki/HSL_and_HSV

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊