跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:岳彤
研究生(外文):Tung Yueh
論文名稱:背對背主動式電力調節器之反向零序電流補償方法
論文名稱(外文):The Reverse Zero-Sequence Current Compensation Method for Back-to-Back Active Power Conditioners
指導教授:陳耀銘
指導教授(外文):Yaow-Ming Chen
口試委員:陳德玉邱煌仁陳景然
口試委員(外文):Dan ChenHuang-Jen ChiuChing-Jan Chen
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:微電網背對背轉換器主動式電力調節器功率潮流零序電流不平衡電壓
外文關鍵詞:AC micro-gridback-to-back converteractive power conditionerpower flowzero-sequence currentunbalanced voltage
相關次數:
  • 被引用被引用:2
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出應用於三相四線式背對背主動式電力調節器之反向零序電流補償方法。背對背主動式電力調節器之功能為調節兩個獨立微電網之間的功率潮流,然而,當電壓故障發生時,因電壓不平衡造成的二倍頻振盪會反應在主動式電力調節器之輸出功率上。因此,本論文透過同時控制正序、負序及零序電流來消除輸出實虛功之二倍頻振盪。但大量的零序電流會在直流匯流排之分離電容(Split capacitor)上產生很大的電壓漣波,此大幅度的電壓漣波不僅會加速電解電容老化,其最大值可能會超過電容耐壓而損毀電容。反之,其最小值若低於前級整流器所連接之微電網之交流電壓峰值,可能會導致輸入電流失真,甚至使整個背對背主動式電力調節器無法正常運作。因此,本論文提出反向零序電流補償方法,透過前級整流器補償適當的零序電流,來減小分離式電容上之電壓漣波。本論文說明了主動式電力調節器於電壓不平衡下之功率潮流控制策略,並推導出反向零序電流方法,兩者皆經電腦模擬驗證。最後,實際研製一組5kVA之主動式電力調節器原型機來進行實作。

In this thesis, a novel reverse zero-sequence current (RZSC) compensation method for three-phase four-wire back-to-back active power conditioner (APC) is proposed. The objective of the APC is to achieve the active and reactive power transmission between two micro-grids. However, for the unbalanced voltage sag micro-grid system, the double-line frequency oscillation exists in the output active/reactive power of the APC. Therefore, this thesis utilizes the positive-/negative-/zero-sequence current to eliminate these oscillation, but the zero-sequence current produces the line frequency ripple voltage on the split capacitors of the dc-bus. The capacitor ripple voltage speeds up the aging process and reduces its life-time. Also, it may exceed the maximum operating voltage and damage the split capacitors, distort the output current of the inverter, or even cause the malfunction of the APC. Therefore, the RZSC method is proposed to compensate the impact of the ripple voltage to the split capacitors. The operation principle of the back-to-back APC under the unbalanced grid voltage is introduced, and the mathematical equation derivation of the proposed RZSC method is presented. Both computer simulations and hardware experimental results are presented to verify the performance of the back-to-back APC with the proposed RZSC method.

口試委員會審定書 #
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究動機與背景 1
1-2 文獻回顧 2
1-3 論文大綱 3
第二章 適用於微電網之背對背主動式電力調節器 5
2-1 微電網介紹 5
2-1-1 微電網之構成及特性 5
2-1-2 電力系統故障介紹 6
2-1-3 實虛功補償之策略 7
2-2 主動式電力調節器簡介 9
2-3-1 三相換流器之架構介紹 9
2-3-2 電流控制策略 11
第三章 背對背主動式電力調節器架構與控制原理 15
3-1 三相四線式背對背主動式電力調節器 15
3-1-1 電力級架構及其前後級之運作 15
3-1-2 三相正弦脈寬調變切換技術 16
3-1-3 帕克轉換矩陣 18
3-1-4 三相主動式電力調節器數學模型 22
3-2 後級換流器之功率潮流控制策略 25
3-2-1 零序電壓及電流分析 25
3-2-2 功率潮流控制命令推導 27
3-3 前級整流器之控制策略 31
3-3-1 直流匯流排電壓控制策略 31
3-3-2 直流匯流排電壓漣波分析 32
3-3-3 反向零序電流補償方法 34
3-4 電腦模擬驗證 37
3-4-1 基本實虛功傳送測試 37
3-4-2 反向零序電流補償方法測試 38
第四章 系統軟硬體電路 42
4-1 電力級硬體電路 42
4-1-1 濾波電感設計 43
4-1-2 直流匯流排之分離電容設計 43
4-2 控制級硬體電路 44
4-2-1 微控制器 45
4-2-2 微控制器之周邊電路介紹 45
4-2-3 電壓與電流偵測電路設計 50
4-3 數位控制程式設計 52
4-3-1 數位濾波器 52
4-3-2 數位控制器 54
4-4 系統控制流程 55
4-4-1 後級換流器之系統控制流程 55
4-4-2 前級整流器之系統控制流程 60
第五章 硬體實作與測試波形 66
5-1 電壓平衡時之功能測試 67
5-1-1 後級換流器之實虛功傳送測試 67
5-1-2 主動式電力調節器之實虛功傳送測試 68
5-2 電壓不平衡時之功能測試 69
5-2-1 後級換流器之消除實虛功漣波測試 70
5-2-2 反向零序電流補償方法測試 73
5-3 燒機測試與效率量測 77
第六章 結論與未來展望 82
6-1 結論 82
6-2 未來研究方向 82
參考文獻 84



[1]R. Majumder, “A hybrid microgrid with DC connection at back to back converters,” IEEE Trans. on Smart Grid, vol. 5, no. 1, pp. 251-259, Jan. 2014.
[2]T. Friedli, S.D. Round, D. Hassler, and J.W. Kolar, “Design and performance of a 200-kHz all-SiC JFET current DC-link back-to-back converter,” IEEE Trans. on Ind. Appl., vol. 45, no. 5, pp. 1868-1878, Sep.2009.
[3]H. Akagi and R. Kitada, “Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters,” IEEE Trans. on Power Electron., vol. 26, no. 9, pp. 2457-2464, Sep. 2011.
[4]G. Buticchi, E. Lorenzani, and C. Bianchini, “Optimal system control of a back-to-back power converter for wind grid-connected converter,” in Proc. IEEE ENERGYCON, 2012, pp. 195-200.
[5]F. Sastrowijoyo, J. Choi, and G.B. Chung, “Fuzzy control for back to back converter in DFIG for wind power generation,” in Proc. IEEE ICPE and ECCE, 2011, pp. 1337-1343.
[6]S. Hu and H. Xu, “Research on sensorless control based back-to-back converter for direct-driven WECS,” in Proc. IEEE APPEEC, 2009, pp. 1-4.
[7]L. Queval and H. Ohsaki, “Back-to-back converter design and control for synchronous generator-based wind turbines,” in Proc. IEEE ICRERA., 2012, pp. 1-6.
[8]A.P. Deshpande, B.K. Chaudhari, and V.N. Pande, “Design and simulation of back-to-back converter for modern wind energy generation system using dSPACE,” in Proc. IEEE EPSCICON, 2012, pp. 1-6.
[9]J. Alcala, V. Cardenas, J. Perez-Ramirez, R.J. Betancourt, and H. Miranda, “Improving power flow in transformers using a BTB converter to balance low voltage feeders,” in Proc. IEEE ECCE, 2012, pp. 2038-2044.
[10]R. Simanjorang, Y. Miura, T. Ise, S. Sugimoto, and H. Fujita, “Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines,” in Proc. IEEE PCCON, 2007, pp. 997-1004.
[11]T.F. Wu, C.H. Chang, L.C. Lin, G.R. Yu, and Y.R. Chang, “DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems,” IEEE Trans. on Power Electron., vol.28, no.4, pp. 1890-1899, April. 2013.
[12]H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. on Power Electron., vol.28, no.5, pp. 2246-2258, May. 2013.
[13]R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. on Power Syst., vol. 25, no. 2, pp. 821-834, May. 2010.
[14]J. Alcala, V.Cardenas, A.R. Ramirez-Lopez, and J. Gudino-Lau, “Study of the bidirectional power flow in back - to - back converters by using linear and nonlinear control strategies,” in Proc. IEEE ECCE, 2011, pp.806-813.
[15]Z. Shu, S. Xie, and Q. Li, “Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system,” IEEE Trans. Power Electron., vol.26, no. 2, pp. 334-343, Feb. 2011.
[16]K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. on Power Electron., vol.22, no.4, pp. 1107-1115, Jul. 2007.
[17]F. Katiraei and M.R. Iravani, “Power management strategies for a microgrid with multiple distributed generation units,” IEEE Trans. on Power Syst., vol.21, no.4, pp. 1821-1831, Nov. 2006.
[18]H. Bevrani and S. Shokoohi, “An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids,” IEEE Trans. on Smart Grid, vol. 4, no. 3, pp. 1505-1513, Sep. 2013.
[19]Y. M. Chen, H. C. Wu, Y. C. Chen, K. Y. Lee and S. S. Shyu, “The AC line current regulation strategy for the grid-connected PV system,” IEEE Trans. on Power Electron., vol.25, no.1, pp. 209-218, Jan. 2010.
[20]J. Jung, S. Lim and K. Nam, “A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,” IEEE Trans. on Ind. Appl., vol.35, no.5, pp. 1124-1131, Sep/Oct. 1999.
[21]N. Hur, J. Jung, and K. Nam, “A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system,” IEEE Trans. on Ind. Electron.., vol. 48, no. 4, pp. 794-803, Aug. 2001.
[22]M. Hagiwara and H. Akagi, “Practical methods for tuning PI controllers in the DC-link voltage loop in back-to-back power converters,” in Proc. IEEE CIPE, 2010, pp. 46-52.
[23]C. Y. Tang, Y. F. Chen, Y. M. Chen, and Y. R. Chang, “DC-link voltage control strategy for three-phase back-to-back active power conditioners,” IEEE Trans. on Ind. Electron.., vol.62, no.10, pp. 6306-6316, Oct. 2015.
[24]S. Alepuz, S. Busquets-Monge, J. Bordonau, J. A. Martinez-Velasco, C. A. Silva, J. Pontt and J. Rodriguez, “Control strategies based on symmetrical components for grid-connected converters under voltage dips,” IEEE Trans. on Ind. Electron., vol.56, no.6, pp. 2162-2173, June. 2009.
[25]H. Li, K. Zhang, H. Zhao, S. Fan and J. Xiong, “Flexible active power control of distributed power generation systems during grid faults,” IEEE Trans. on Ind. Electron., vol.54, no.5, pp. 2583-2592, Oct. 2007.
[26]H. S. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. on Ind. Electron., vol.46, no.5, pp. 953-959, Oct. 1999.
[27]F. A. Magueed, A. Sannino and J. Svensson, “Transient performance of voltage source converter under unbalanced voltage dips,” in Proc. lEEE PESC, 2004, pp. 1163-1168.
[28]M. Hagiwara and H. Akagi, “An approach to regulating the DC-link voltage of a voltage-source BTB system during power line faults,” IEEE Trans. on Ind. Appl., vol.41, no.5, pp. 1263-1271, Sep/Oct. 2005.
[29]H. Li, K. Zhang, H. Zhao, S. Fan and J. Xiong, “Power controllability of a three-phase converter with an unbalanced AC source,” IEEE Trans. on Power Electron., vol.30, no.3, pp. 1591-1604, Mar. 2015.
[30]J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, “Control of power converters in AC microgrids,” IEEE Trans. on Power Electron., vol.27, no.11, pp. 4734-4749, Nov. 2012.
[31]E. J. Coster, J. M. A. Myrzik and W. L. Kling, “Effect of grid disturbances on fault-ride-through behaviour of MV-connected DG-units, in especially CHP-plants,” in Proc. CIGRE/IEEE PES Joint Symposium, 2009, pp. 1-11.
[32]Z. Kan, Z. Guo, C. Zhang, and X. Meng, “Research on droop control of inverter interface in autonomous microgrid, ” in Proc. IEEE PEAC, 2014, pp.195-199.
[33]D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. on Ind. Appl., vol. IA-21, no. 4, pp. 562-570, May/June. 1985.
[34]陳彥甫,「具功率潮流優化控制之主動式電力調節器研製」,國立台灣大學電機所碩士論文,2014。
[35]M. Aredes, J. Hafner and K. Heumann, “Three-phase four-wire shunt active filter control strategies,” IEEE Trans. on Power Electron., vol.12, no.2, pp. 311-318, Mar. 1997.
[36]M. F. Schonardie and D. C. Martins, "Application of the dq0 transformation in the three-phase grid-connected PV systems with active and reactive power control," in Proc. IEEE ICSET, 2008, pp. 18-23.
[37]姚竺君,「三相併聯型太陽光電能系統模型建立與模擬分析」,國立台灣大學電機所碩士論文,2010。
[38]陳要廷,「具功率控制與低電壓穿越之三相市電併聯換流器研製」,國立台灣大學電機所碩士論文,2013。
[39]R. Teodorescu, F. Blaabjerg, M. Liserre and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proceedings - Electric Power Appl., vol. 153, no. 5, pp. 750-762, Sep. 2006


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top