跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊易叡
研究生(外文):Yi-Jui Yang
論文名稱:光纖光柵在單搭接膠合接口完整性監測之應用
論文名稱(外文):Monitoring Single Lap Joint Integrity with Optical Fiber Grating
指導教授:單秋成單秋成引用關係
口試委員:廖顯奎林志郎江家慶
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:203
中文關鍵詞:單搭接膠合接口光纖光柵感測器結構完整性監測疲勞損傷監控環氧樹脂結構膠
外文關鍵詞:Single lap jointOptical fiber grating sensorStructural health monitoringFatigue damage monitoringEpoxy resin structural adhesive
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,黏膠性能的提升,使得膠合接合的應用日趨普遍,但關於膠合接口完整性監測的研究,尚缺乏全面性的探討。因此本研究採用布拉格光纖光柵 (fiber Bragg grating, FBG) 感測器,利用其可內埋於結構內的優勢來偵測膠合接口內因破壞所造成光纖感測器周圍應變場的改變。
本實驗的試片為單搭接膠合接口,搭接物為6061-T6鋁合金,黏膠為Loctite所生產之環氧樹脂結構膠E-30CL。首先透過有限元素分析單搭接膠合接口內之應力、應變場,並配合實測驗證FBG埋放角度與佈放位置的靈敏性,證實FBG以平行於施力方向佈放在搭接長度方向邊緣處具有最佳之破壞偵測效果。其次以拉伸測試、疲勞測試、拉伸破壞後疲勞測試、拉伸破壞後浸入熱水中三十天後再施加循環負載、先高溫低濕三十天後再浸入熱水中三十天後再施加循環負載,證實FBG反射頻譜可偵測到因破壞或是水分滲入所造成之應變場改變。在確認以FBG頻譜偵測膠合接口破壞之可行性後,進一步探討以能量調變法進行以FBG作為濾波器之連動測試、以可調式濾波器與FBG作為濾波器進行動態的拉伸破壞監測、拉伸破壞後疲勞測試以及逐步加載與卸載的測試。結論為將濾波FBG用E-30CL黏貼於搭接物上與感測FBG的連動效果十分良好,而檢光器輸出電壓在拉伸破壞發生時由於應變集中,FBG反射頻譜的飄移量大幅提升,導致調變電壓值有突然升高的現象。



The performance of adhesives has made great progress in recent years, so now adhesives are not only used for secondary structures but also applied to some primary structures. Although adhesives are widely used in industries now, the research on monitoring the integrity of adhesive joints is still at an early stage and lack complete study. One of the advantages of fiber Bragg grating (FBG) sensors is its capability of being embedded into the structure. So this thesis adopted FBG to monitor the variation of the strain filed caused by damage around the embedded FBG sensors.
This research used single lap joints (SLJ) as the testing specimens. The adherend was 6061-T6 aluminum alloy and the adhesive was epoxy resin E-30CL manufactured by Loctite. At the beginning of the experiment, finite element analysis (FEA) had been carried out to study the stress and strain distribution in the adhesive. The angular sensitivity and embedded position sensitivity were also investigated by experiments. The results show that the FBG which embedded near the edge of the overlap length direction and parallel to the load direction has the best sensitivity to the damage detection.The follow-up experiments including tensile test, fatigue test, fatigue test after tensile damage has occurred, fatigue test after tensile damage has occurred then immersed the specimens into hot water for 30 days, fatigue test after the specimens have been placed in a high temperature and low humidity environment for 30 days then immersed in hot water for 30 days. The conclusion is that the FBG reflected spectrum could detect the change in strain filed caused by tensile, fatigue and moisture damage. After the feasibility of using FBG sensors to detect the damage in the adhesives had been confirmed, the test of interactive effect by using FBG as the filter, the dynamic tensile test by using adjustable filter and FBG as the filters, the fatigue test after tensile damage has occurred and raise the load step by step and unloading had all been experimented by using energy modulation method. The conclusions are that the interactive effect could well achieved by using FBG pasted in E-30CL on the top of the adherend, and the modulation voltage will suddenly rise when the damage has occurred because of the strain concentration effect.


致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 X
表目錄 XXII
第一章 緒論 1
1.1 引言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 膠合接口 4
2.1.1 單搭接膠合接口試片之製備參數 4
2.1.2 溢膠對單搭接膠合接口之影響 5
2.1.3 疲勞測試 6
2.1.4 高溫高濕環境測試 7
2.1.5 單搭接膠合接口之應力分佈解析解 10
2.1.6 單搭接膠合接口之應力分佈有限元素分析 12
2.1.7 非破壞性檢測應用於膠合接口 13
2.1.8 其他種類之接合方式 15
2.2 光纖基本構造 20
2.3 光纖光柵感測器 20
2.3.1 光纖光柵感測器原理 20
2.3.2 布拉格光纖光柵原理 21
2.3.3 能量調變法 25
2.3.4 光纖光柵感測器應用於膠合接口完整性監測 28
第三章 有限元素分析 30
3.1 分析模型之幾何尺寸、元素設定 30
3.2 邊界條件、接觸與負載設定 30
3.3 材料常數設定 31
3.4 有限元素模擬之結果與討論 31
3.4.1 網格收斂性分析 32
3.4.2 搭接長度12.5 mm受到靜態負載時之分析 32
3.4.3 搭接長度25 mm受到靜態負載時之分析 33
3.4.4 內埋光纖之分析 33
3.4.5 溫度變化對FBG應變的影響分析 34
3.4.6 外加負載對FBG應變的影響分析 36
第四章 實驗設備與儀器 48
4.1 製備單搭接膠合接口試片用設備 48
4.1.1 環氧樹脂結構膠E-30CL與混膠槍 48
4.1.2 混膠管 48
4.1.3 表面研磨設備 49
4.1.4 黏著與成化時的治具 50
4.1.5 單搭接膠合接口試片夾持於MTS上之夾具 51
4.2 資料擷取與控制設備 52
4.2.1 NI-GPIB-USB-HS傳輸線 52
4.2.2 NI - 6009 52
4.3 光纖相關設備 53
4.3.1 手持式光纖顯微鏡 53
4.3.2 光纖切割機 54
4.3.3 光纖熔接機 54
4.3.4 光循環器 (Optical Circulator) 55
4.3.5 光學開關 (Optical Switch) 56
4.3.6 光頻譜分析儀 (Optical Spectrum Analyzer, OSA) 56
4.3.7 光耦合器(Coupler) 57
4.3.8 寬頻光源 (Broadband Light Source) 57
4.3.9 可調式光濾波器 (OTF - 300 - 03S3) 58
4.3.10 檢光器 (Photo Detector, PD) 59
4.4 溫度與環境測試設備 60
4.4.1 恆溫恆濕箱 60
4.4.2 恆溫水槽 61
4.4.3 熱敏電阻測溫器 61
4.5 萬能材料試驗機 (Material Testing System, MTS) 62
第五章 實驗方法與流程 64
5.1 試片命名系統 64
5.2 實驗光路設置 65
5.3 定量分析頻譜之變化 66
5.4 試片準備 68
5.5 實驗流程 68
5.5.1 內埋角度與佈放位置之靈敏性測試 68
5.5.2 拉伸測試 70
5.5.3 疲勞測試 70
5.5.4 拉伸破壞後疲勞測試 70
5.5.5 拉伸破壞後再浸入熱水中三十天後進行疲勞測試 71
5.5.6 高溫低濕三十天後浸入熱水中三十天後進行疲勞測試 71
5.5.7 破壞後FBG之取出 71
5.5.8 溫度變化時,感測器FBG與濾波器FBG頻譜之連動測試 71
5.5.9 利用能量調變法監測動態拉伸破壞之探討 74
5.5.10 利用能量調變法進行拉伸破壞後疲勞測試 76
5.5.11 利用能量調變法進行逐步加載與卸載的測試 76
5.5.12 以頻譜反射率計算濾波後輸出電壓 76
5.6 實驗使用之FBG總數量記錄 77
第六章 實驗結果與討論 79
6.1 內埋角度與佈放位置之靈敏性測試 79
6.1.1 內埋角度45° 79
6.1.2 內埋角度0°與90° 83
6.1.3 佈放位置之靈敏性 87
6.1.4 內埋角度與佈放位置靈敏性測試小結 93
6.2 拉伸測試 96
6.2.1 拉伸測試小結 97
6.3 疲勞測試 100
6.3.1 單搭接鋁合金試片之膠合疲勞壽命測定 100
6.3.2 內埋FBG之疲勞測試 101
6.3.3 先拉伸至2000 N後卸載再疲勞測試 101
6.3.4 疲勞測試小結 103
6.4 拉伸破壞後疲勞測試 111
6.4.1 先拉伸至三根FBG皆偵測到破壞 111
6.4.2 拉伸破壞後疲勞測試 112
6.4.3 拉伸破壞後疲勞測試小結 112
6.5 拉伸破壞後再浸入熱水中三十天後進行疲勞測試 116
6.5.1 浸泡於熱水中天數與接口強度變化關係 116
6.5.2 拉伸破壞 116
6.5.3 浸泡於熱水中三十天 117
6.5.4 置於乾燥環境五天 118
6.5.5 疲勞測試 118
6.5.6 小結 119
6.6 高溫低濕三十天後浸入熱水中三十天後進行疲勞測試 125
6.6.1 高溫低濕與浸泡於熱水中三十天後之接口強度 125
6.6.2 高溫低濕三十天 126
6.6.3 浸泡於熱水中三十天 126
6.6.4 置於乾燥環境五天. 126
6.6.5 疲勞測試 127
6.6.6 小結 127
6.7 破壞後FBG之取出 133
6.8 溫度變化時,感測器FBG與濾波器FBG頻譜之連動測試 138
6.8.1 埋入前 138
6.8.2 埋入單搭接之膠合接口後 138
6.8.3 以FBG作為溫度感測器 138
6.8.4 連動測試小結 139
6.9 利用能量調變法監測動態拉伸破壞之探討 143
6.9.1 將濾波FBG黏於距長度方向邊緣5 mm 143
6.9.2 將濾波FBG黏於距長度方向邊緣1.75 mm 143
6.9.3 動態拉伸破壞監測小結 144
6.10 利用能量調變法進行拉伸破壞後疲勞測試 148
6.11 利用能量調變法進行逐步加載與卸載的測試 149
6.12 以頻譜反射率計算濾波後輸出電壓 151
第七章 結論與未來展望 161
7.1 結論 161
7.2 未來展望 163
參考文獻 165
附錄 170

1.Park, Y.-B., et al., Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions. Composite Structures, 2010. 92(9): p. 2173-2180.
2.Adams, R.D., J. Comyn, and W.C. Wake, Structural adhesive joints in engineering. 1997: Springer Science & Business Media.
3.Higgins, A., Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives, 2000. 20(5): p. 367-376.
4.Di Bella, G., et al., Mechanical characterization of adhesive joints with dissimilar substrates for marine applications. International Journal of Adhesion and Adhesives, 2013. 41: p. 33-40.
5.Hendricks, W.R., The Aloha Airlines accident—a new era for aging aircraft, in Structural integrity of aging airplanes. 1991, Springer. p. 153-165.
6.Zhang, F., et al., Durability of adhesively-bonded single lap–shear joints in accelerated hygrothermal exposure for automotive applications. International Journal of Adhesion and Adhesives, 2013. 44: p. 130-137.
7.Goglio, L. and M. Rossetto, Ultrasonic testing of adhesive bonds of thin metal sheets. NDT & E International, 1999. 32(6): p. 323-331.
8.Michaloudaki, M., E. Lehmann, and D. Kosteas, Neutron imaging as a tool for the non-destructive evaluation of adhesive joints in aluminium. International journal of adhesion and adhesives, 2005. 25(3): p. 257-267.
9.Shenoy, V., et al., An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain. International Journal of Adhesion and Adhesives, 2009. 29(4): p. 361-371.
10.Khoramishad, H., et al., A generalised damage model for constant amplitude fatigue loading of adhesively bonded joints. International Journal of Adhesion and Adhesives, 2010. 30(6): p. 513-521.
11.Khoramishad, H., et al., Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. International Journal of fatigue, 2010. 32(7): p. 1146-1158.
12.Kang, M.-H., J.-H. Choi, and J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Composite Structures, 2014. 108: p. 417-422.
13.Mactabi, R., I.D. Rosca, and S.V. Hoa, Monitoring the integrity of adhesive joints during fatigue loading using carbon nanotubes. Composites Science and Technology, 2013. 78: p. 1-9.
14.Capell, T., et al., The use of an embedded chirped fibre Bragg grating sensor to monitor disbond initiation and growth in adhesively bonded composite/metal single lap joints. Journal of Optics A: Pure and Applied Optics, 2007. 9(6): p. S40.
15.Murayama, H., et al., Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 2012. 11(3): p. 325-344.
16.Sulejmani, S., et al., Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Materials and Structures, 2014. 23(7): p. 075006.
17.Schulz, W.L., et al. Health monitoring of an adhesive joint using a multiaxis fiber grating strain sensor system. in Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing. 1999. International Society for Optics and Photonics.
18.Schulz, W.L., et al. Progress on monitoring of adhesive joints using multiaxis fiber grating sensors. in SPIE''s 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
19.Abdel Wahab, M., Fatigue in adhesively bonded joints: a review. ISRN Materials Science, 2012. 2012.
20.Pires, I., et al., Performance of bi-adhesive bonded aluminium lap joints. International Journal of Adhesion and Adhesives, 2003. 23(3): p. 215-223.
21.Volkersen, O., Rivet strength distribution in tensile-stressed rivet joints with constant cross-section. 1938. 15: p. 41-47.
22.Kahraman, R., M. Sunar, and B. Yilbas, Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. Journal of materials processing technology, 2008. 205(1): p. 183-189.
23.Da Silva, L.F., et al., Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. International Journal of Adhesion and Adhesives, 2009. 29(6): p. 621-632.
24.Pereira, A., et al., Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. Journal of Materials Processing Technology, 2010. 210(4): p. 610-617.
25.Lang, T.P. and P.K. Mallick, Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 1998. 18(3): p. 167-177.
26.Ferreira, J., et al., Fatigue behaviour of composite adhesive lap joints. Composites Science and Technology, 2002. 62(10): p. 1373-1379.
27.Underhill, P. and D. DuQuesnay, The dependence of the fatigue life of adhesive joints on surface preparation. International journal of adhesion and adhesives, 2006. 26(1): p. 62-66.
28.Briskham, P. and G. Smith, Cyclic stress durability testing of lap shear joints exposed to hot-wet conditions. International journal of adhesion and adhesives, 2000. 20(1): p. 33-38.
29.Doyle, G. and R.A. Pethrick, Environmental effects on the ageing of epoxy adhesive joints. International Journal of Adhesion and Adhesives, 2009. 29(1): p. 77-90.
30.Zhang, F., et al., Experimental study of strain rate effects on the strength of adhesively bonded joints after hygrothermal exposure. International Journal of Adhesion and Adhesives, 2015. 56: p. 3-12.
31.da Silva, L.F., et al., Analytical models of adhesively bonded joints—Part I: Literature survey. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 319-330.
32.da Silva, L.F., et al., Analytical models of adhesively bonded joints—part II: comparative study. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 331-341.
33.Goland, M. and E. Reissner, The stresses in cemented joints. Journal of applied mechanics, 1944. 11(1): p. A17-A27.
34.Renton, W.J. and J.R. Vinson, The efficient design of adhesive bonded joints. The Journal of Adhesion, 1975. 7(3): p. 175-193.
35.Allman, D., A theory for elastic stresses in adhesive bonded lap joints. The Quarterly journal of mechanics and applied mathematics, 1977. 30(4): p. 415-436.
36.Adams, R. and V. Mallick, A method for the stress analysis of lap joints. The Journal of Adhesion, 1992. 38(3-4): p. 199-217.
37.Sawa, T., K. Nakano, and H. Toratani, A two-dimensional stress analysis of single-lap adhesive joints subjected to tensile loads. Journal of adhesion science and technology, 1997. 11(8): p. 1039-1056.
38.Goncalves, J., M. De Moura, and P. De Castro, A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives, 2002. 22(5): p. 357-365.
39.Caddell, R.M., R.S. Raghava, and A.G. Atkins, A yield criterion for anisotropic and pressure dependent solids such as oriented polymers. Journal of Materials Science, 1973. 8(11): p. 1641-1646.
40.Schliekelmann, R., Non-destructive testing of adhesive bonded metal-to-metal joints 1. Non-Destructive Testing, 1972. 5(2): p. 79-86.
41.Schliekelmann, R., Non-destructive testing of adhesive bonded metal-to-metal joints 2. Non-destructive Testing, 1972. 5(3): p. 144-153.
42.Guyott, C. and P. Cawley, Evaluation of the cohesive properties of adhesive joints using ultrasonic spectroscopy. NDT International, 1988. 21(4): p. 233-240.
43.Brotherhood, C., B. Drinkwater, and S. Dixon, The detectability of kissing bonds in adhesive joints using ultrasonic techniques. Ultrasonics, 2003. 41(7): p. 521-529.
44.Hanneman, S.E. and V.K. Kinra, A new technique for ultrasonic nondestructive evaluation of adhesive joints: Part I. Theory. Experimental mechanics, 1992. 32(4): p. 323-331.
45.Hanneman, S., V. Kinra, and C. Zhu, A new technique for ultrasonic nondestructive evaluation of adhesive joints: Part II. Experiment. Experimental mechanics, 1992. 32(4): p. 332-339.
46.Baker, A., Bonded composite repair of fatigue-cracked primary aircraft structure. Composite structures, 1999. 47(1): p. 431-443.
47.Baker, A., N. Rajic, and C. Davis, Towards a practical structural health monitoring technology for patched cracks in aircraft structure. Composites Part A: Applied Science and Manufacturing, 2009. 40(9): p. 1340-1352.
48.Kweon, J.-H., et al., Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Composite structures, 2006. 75(1): p. 192-198.
49.Akpinar, S., The strength of the adhesively bonded step-lap joints for different step numbers. Composites Part B: Engineering, 2014. 67: p. 170-178.
50.沈育霖, 光纖感測器簡介. 勞工安全簡訊, 2005. 72: p. 4-9.
51.Born, M. and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 2000: CUP Archive.
52.沈育霖, 單秋成, 光纖感測器原理及在複合材料上之應用. 工業安全衛生月刊, 2005(187): p. 9-24.
53.Erdogan, T., Fiber grating spectra. Journal of lightwave technology, 1997. 15(8): p. 1277-1294.
54.Saleh, B.E., M.C. Teich, and B.E. Saleh, Fundamentals of photonics. Vol. 22. 1991: Wiley New York.
55.Kersey, A.D., et al., Fiber grating sensors. Journal of lightwave technology, 1997. 15(8): p. 1442-1463.
56.Menendez, J.M. and J.A. Guemes. Bragg-grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates. in SPIE''s 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
57.Lin, C.L., Opto-Mechanical Applications of Microstructured Materials 2004, Joseph Fourier University / National Taiwan University.
58.Kersey, A., T. Berkoff, and W. Morey, High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters, 1992. 28(3): p. 236-238.
59.Fallon, R., et al., All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating. Measurement Science and Technology, 1998. 9(12): p. 1969.
60.陳柏廉, 布拉格光纖光柵於結構衝擊監測與定位之應用. 國立台灣大學機械工程學系博士論文, 2010.
61.蔣涵茵, 高靈敏度微型光纖光柵溫度感測器. 國立台灣大學機械工程學系碩士論文, 2015.
62.Ismail, A. and S. Kumari, Potential effect of potting resin on the performance of hollow fibre membrane modules in a CO 2/CH 4 gas separation system. Journal of membrane science, 2004. 236(1): p. 183-191.
63.Raos, P., D. Kozak, and M. Lucić. Stress-Strain Analysis of Single-Lap Tensile Loaded Adhesive Joints. in The 9th Int. Conference on Numerical Methods in Industrial Forming Processes NUMIFORM''07. 2007.
64.吳宗遠, 以複合材料補償光纖光柵因溫造成的波長飄移之改良式機制. 國立台灣大學機械工程學系碩士論文, 2003.
65.黃彥彰, 用於光纖光柵大範圍波長飄移之被動可調式溫度補償機構. 國立台灣大學機械工程學系碩士論文, 2014.
66.Hand, H., et al., Effects of environmental exposure on adhesively bonded joints. International Journal of Adhesion and Adhesives, 1991. 11(1): p. 15-23.
67.Bao, L.-R., A.F. Yee, and C.Y.-C. Lee, Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer, 2001. 42(17): p. 7327-7333.
68.Loctite EA E-30CL Technical Data Sheets Loctite, Editor. 2014.
69.楊仕偉, 以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞. 國立台灣大學機械工程學系碩士論文, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top