1.Park, Y.-B., et al., Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions. Composite Structures, 2010. 92(9): p. 2173-2180.
2.Adams, R.D., J. Comyn, and W.C. Wake, Structural adhesive joints in engineering. 1997: Springer Science & Business Media.
3.Higgins, A., Adhesive bonding of aircraft structures. International Journal of Adhesion and Adhesives, 2000. 20(5): p. 367-376.
4.Di Bella, G., et al., Mechanical characterization of adhesive joints with dissimilar substrates for marine applications. International Journal of Adhesion and Adhesives, 2013. 41: p. 33-40.
5.Hendricks, W.R., The Aloha Airlines accident—a new era for aging aircraft, in Structural integrity of aging airplanes. 1991, Springer. p. 153-165.
6.Zhang, F., et al., Durability of adhesively-bonded single lap–shear joints in accelerated hygrothermal exposure for automotive applications. International Journal of Adhesion and Adhesives, 2013. 44: p. 130-137.
7.Goglio, L. and M. Rossetto, Ultrasonic testing of adhesive bonds of thin metal sheets. NDT & E International, 1999. 32(6): p. 323-331.
8.Michaloudaki, M., E. Lehmann, and D. Kosteas, Neutron imaging as a tool for the non-destructive evaluation of adhesive joints in aluminium. International journal of adhesion and adhesives, 2005. 25(3): p. 257-267.
9.Shenoy, V., et al., An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain. International Journal of Adhesion and Adhesives, 2009. 29(4): p. 361-371.
10.Khoramishad, H., et al., A generalised damage model for constant amplitude fatigue loading of adhesively bonded joints. International Journal of Adhesion and Adhesives, 2010. 30(6): p. 513-521.
11.Khoramishad, H., et al., Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. International Journal of fatigue, 2010. 32(7): p. 1146-1158.
12.Kang, M.-H., J.-H. Choi, and J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Composite Structures, 2014. 108: p. 417-422.
13.Mactabi, R., I.D. Rosca, and S.V. Hoa, Monitoring the integrity of adhesive joints during fatigue loading using carbon nanotubes. Composites Science and Technology, 2013. 78: p. 1-9.
14.Capell, T., et al., The use of an embedded chirped fibre Bragg grating sensor to monitor disbond initiation and growth in adhesively bonded composite/metal single lap joints. Journal of Optics A: Pure and Applied Optics, 2007. 9(6): p. S40.
15.Murayama, H., et al., Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 2012. 11(3): p. 325-344.
16.Sulejmani, S., et al., Disbond monitoring in adhesive joints using shear stress optical fiber sensors. Smart Materials and Structures, 2014. 23(7): p. 075006.
17.Schulz, W.L., et al. Health monitoring of an adhesive joint using a multiaxis fiber grating strain sensor system. in Nondestructive Evaluation Techniques for Aging Infrastructures & Manufacturing. 1999. International Society for Optics and Photonics.
18.Schulz, W.L., et al. Progress on monitoring of adhesive joints using multiaxis fiber grating sensors. in SPIE''s 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
19.Abdel Wahab, M., Fatigue in adhesively bonded joints: a review. ISRN Materials Science, 2012. 2012.
20.Pires, I., et al., Performance of bi-adhesive bonded aluminium lap joints. International Journal of Adhesion and Adhesives, 2003. 23(3): p. 215-223.
21.Volkersen, O., Rivet strength distribution in tensile-stressed rivet joints with constant cross-section. 1938. 15: p. 41-47.
22.Kahraman, R., M. Sunar, and B. Yilbas, Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. Journal of materials processing technology, 2008. 205(1): p. 183-189.
23.Da Silva, L.F., et al., Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. International Journal of Adhesion and Adhesives, 2009. 29(6): p. 621-632.
24.Pereira, A., et al., Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints. Journal of Materials Processing Technology, 2010. 210(4): p. 610-617.
25.Lang, T.P. and P.K. Mallick, Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 1998. 18(3): p. 167-177.
26.Ferreira, J., et al., Fatigue behaviour of composite adhesive lap joints. Composites Science and Technology, 2002. 62(10): p. 1373-1379.
27.Underhill, P. and D. DuQuesnay, The dependence of the fatigue life of adhesive joints on surface preparation. International journal of adhesion and adhesives, 2006. 26(1): p. 62-66.
28.Briskham, P. and G. Smith, Cyclic stress durability testing of lap shear joints exposed to hot-wet conditions. International journal of adhesion and adhesives, 2000. 20(1): p. 33-38.
29.Doyle, G. and R.A. Pethrick, Environmental effects on the ageing of epoxy adhesive joints. International Journal of Adhesion and Adhesives, 2009. 29(1): p. 77-90.
30.Zhang, F., et al., Experimental study of strain rate effects on the strength of adhesively bonded joints after hygrothermal exposure. International Journal of Adhesion and Adhesives, 2015. 56: p. 3-12.
31.da Silva, L.F., et al., Analytical models of adhesively bonded joints—Part I: Literature survey. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 319-330.
32.da Silva, L.F., et al., Analytical models of adhesively bonded joints—part II: comparative study. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 331-341.
33.Goland, M. and E. Reissner, The stresses in cemented joints. Journal of applied mechanics, 1944. 11(1): p. A17-A27.
34.Renton, W.J. and J.R. Vinson, The efficient design of adhesive bonded joints. The Journal of Adhesion, 1975. 7(3): p. 175-193.
35.Allman, D., A theory for elastic stresses in adhesive bonded lap joints. The Quarterly journal of mechanics and applied mathematics, 1977. 30(4): p. 415-436.
36.Adams, R. and V. Mallick, A method for the stress analysis of lap joints. The Journal of Adhesion, 1992. 38(3-4): p. 199-217.
37.Sawa, T., K. Nakano, and H. Toratani, A two-dimensional stress analysis of single-lap adhesive joints subjected to tensile loads. Journal of adhesion science and technology, 1997. 11(8): p. 1039-1056.
38.Goncalves, J., M. De Moura, and P. De Castro, A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives, 2002. 22(5): p. 357-365.
39.Caddell, R.M., R.S. Raghava, and A.G. Atkins, A yield criterion for anisotropic and pressure dependent solids such as oriented polymers. Journal of Materials Science, 1973. 8(11): p. 1641-1646.
40.Schliekelmann, R., Non-destructive testing of adhesive bonded metal-to-metal joints 1. Non-Destructive Testing, 1972. 5(2): p. 79-86.
41.Schliekelmann, R., Non-destructive testing of adhesive bonded metal-to-metal joints 2. Non-destructive Testing, 1972. 5(3): p. 144-153.
42.Guyott, C. and P. Cawley, Evaluation of the cohesive properties of adhesive joints using ultrasonic spectroscopy. NDT International, 1988. 21(4): p. 233-240.
43.Brotherhood, C., B. Drinkwater, and S. Dixon, The detectability of kissing bonds in adhesive joints using ultrasonic techniques. Ultrasonics, 2003. 41(7): p. 521-529.
44.Hanneman, S.E. and V.K. Kinra, A new technique for ultrasonic nondestructive evaluation of adhesive joints: Part I. Theory. Experimental mechanics, 1992. 32(4): p. 323-331.
45.Hanneman, S., V. Kinra, and C. Zhu, A new technique for ultrasonic nondestructive evaluation of adhesive joints: Part II. Experiment. Experimental mechanics, 1992. 32(4): p. 332-339.
46.Baker, A., Bonded composite repair of fatigue-cracked primary aircraft structure. Composite structures, 1999. 47(1): p. 431-443.
47.Baker, A., N. Rajic, and C. Davis, Towards a practical structural health monitoring technology for patched cracks in aircraft structure. Composites Part A: Applied Science and Manufacturing, 2009. 40(9): p. 1340-1352.
48.Kweon, J.-H., et al., Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Composite structures, 2006. 75(1): p. 192-198.
49.Akpinar, S., The strength of the adhesively bonded step-lap joints for different step numbers. Composites Part B: Engineering, 2014. 67: p. 170-178.
50.沈育霖, 光纖感測器簡介. 勞工安全簡訊, 2005. 72: p. 4-9.
51.Born, M. and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 2000: CUP Archive.
52.沈育霖, 單秋成, 光纖感測器原理及在複合材料上之應用. 工業安全衛生月刊, 2005(187): p. 9-24.53.Erdogan, T., Fiber grating spectra. Journal of lightwave technology, 1997. 15(8): p. 1277-1294.
54.Saleh, B.E., M.C. Teich, and B.E. Saleh, Fundamentals of photonics. Vol. 22. 1991: Wiley New York.
55.Kersey, A.D., et al., Fiber grating sensors. Journal of lightwave technology, 1997. 15(8): p. 1442-1463.
56.Menendez, J.M. and J.A. Guemes. Bragg-grating-based multiaxial strain sensing: its application to residual strain measurement in composite laminates. in SPIE''s 7th Annual International Symposium on Smart Structures and Materials. 2000. International Society for Optics and Photonics.
57.Lin, C.L., Opto-Mechanical Applications of Microstructured Materials 2004, Joseph Fourier University / National Taiwan University.
58.Kersey, A., T. Berkoff, and W. Morey, High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters, 1992. 28(3): p. 236-238.
59.Fallon, R., et al., All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating. Measurement Science and Technology, 1998. 9(12): p. 1969.
60.陳柏廉, 布拉格光纖光柵於結構衝擊監測與定位之應用. 國立台灣大學機械工程學系博士論文, 2010.61.蔣涵茵, 高靈敏度微型光纖光柵溫度感測器. 國立台灣大學機械工程學系碩士論文, 2015.
62.Ismail, A. and S. Kumari, Potential effect of potting resin on the performance of hollow fibre membrane modules in a CO 2/CH 4 gas separation system. Journal of membrane science, 2004. 236(1): p. 183-191.
63.Raos, P., D. Kozak, and M. Lucić. Stress-Strain Analysis of Single-Lap Tensile Loaded Adhesive Joints. in The 9th Int. Conference on Numerical Methods in Industrial Forming Processes NUMIFORM''07. 2007.
64.吳宗遠, 以複合材料補償光纖光柵因溫造成的波長飄移之改良式機制. 國立台灣大學機械工程學系碩士論文, 2003.65.黃彥彰, 用於光纖光柵大範圍波長飄移之被動可調式溫度補償機構. 國立台灣大學機械工程學系碩士論文, 2014.
66.Hand, H., et al., Effects of environmental exposure on adhesively bonded joints. International Journal of Adhesion and Adhesives, 1991. 11(1): p. 15-23.
67.Bao, L.-R., A.F. Yee, and C.Y.-C. Lee, Moisture absorption and hygrothermal aging in a bismaleimide resin. Polymer, 2001. 42(17): p. 7327-7333.
68.Loctite EA E-30CL Technical Data Sheets Loctite, Editor. 2014.
69.楊仕偉, 以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞. 國立台灣大學機械工程學系碩士論文, 2009.