跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾瓅
研究生(外文):Li Tseng
論文名稱:水氣輔助之高靈敏度石墨烯溫度感測器
論文名稱(外文):High Sensitivity Graphene Temperature Sensor via Liquid Assist
指導教授:張所鋐
指導教授(外文):Shuo-Hung Chang
口試委員:蘇志中施文彬黃昆平
口試委員(外文):Chih-Chung SuWen-Pin ShihKun-Ping Huang
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:石墨烯物理吸附轉印銅箔膠帶溫度感測器
外文關鍵詞:graphenephysisorptiontransfercopper tapetemperature sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自石墨烯2004年被發現以來,因為在光學、熱傳、電性、機械強度方面許多特殊的性質,一直是備受矚目的研究對象,其中極大的比表面積(2630 m^2⁄g)以及豐富中孔結構的性質,使其在吸附氣體分子時可以具有很高的靈敏度。
本研究根據石墨烯對氣體吸附具有高靈敏度的性質,利用水汽吸附提升石墨烯溫度感測元件之靈敏度,並且藉由多次轉印的方式,減少傳統轉印過程中濕蝕刻步驟對石墨烯造成的破壞而造成接觸電阻過高的問題。實驗之石墨烯由常壓化學氣相沉積法並搭配純度99.8%銅箔和3M銅箔膠帶兩種催化劑製備而成,並用靜電轉印的方式,將石墨烯轉印在矽晶圓上製作成溫度感測試片,量測階段同時記錄溫度變化與電阻變化,最後經由計算得到各實驗條件下之溫度電阻係數(temperature coefficient of resistance, TCR),並分析其溫度感測的性質,探討催化劑種類、吸附液體種類、轉印次數對石墨烯溫度感測的影響。
研究結果顯示,退火有幫助試片達一致化的效果,且用去離子水作為吸附液體的試片穩定性較佳,而TCR的變異係數依照轉印次數而有所不同。經退火的純質石墨烯在吸附去離子水後,轉印一次石墨烯製成的試片其TCR約為-0.380±0.126,而轉印三次與五次的TCR分別為-0.317±0.056與-0.342±0.055,並可以藉由多次轉印石墨烯,來降低試片本身的接觸電阻,以提升再現性,在相同量測條件下,轉印三次試片的變異係數比轉印一次減少16%,而轉印三次和轉印五次試片的變異係數相差約1.6%,此外,本實驗所使用的兩種銅箔所製作出的石墨烯溫度感測器在相同量測條件下有相近的TCR,兩者均值相差0.95%。


Graphene was discovered in 2004 and regarded as a remarkable material cause by a lot of properties, such as optical, thermal, electrical and mechanical. Furthermore, it not only has ultra-high specific surface area (2630 m^2⁄g) but also rich in pore structure, so that may have the high sensitivity in gas adsorption.
In this study, improving the temperature coefficient of resistance (TCR) of the graphene temperature sensor on the basis of graphene property which has high sensitivity in gas adsorption. And we reduce the internal contact resistance of graphene by transferring more than once. The few-layer graphene was grown by atmospheric pressure chemical vapor deposition using two kinds of catalysts, and 99.8% purity copper foils and 3M copper tapes. Graphene, then, transferred to the silicon wafer substrate. Finally, we discuss the effect of catalysts, liquids and transferring time.
The experimental results indicate that annealing and deionized water adsorption are helpful to improve the consistency. However, the coefficient of variation in TCR will vary with the transferring time, and we find that a way to improve the reproducibility by transferring more than one time. Under the same measurement conditions, the coefficient of variation of samples which compare transferring three times (TCR=-0.317±0.056) with transferring one time (TCR=-0.380±0.126) will be decrease 16%. Moreover, the graphene grown by difference copper catalysts have similar TCR with difference of 0.95%.


誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表格目錄 xiii
第一章 序論 1
1.1 前言 1
1.2 研究動機與目標 2
第二章 文獻回顧 3
2.1 石墨烯 3
2.1.1 石墨烯之結構與性質 3
2.1.2 石墨烯之製備方法 6
2.1.3 石墨烯之轉印方式 9
2.1.4 石墨烯之層數與品質判定 12
2.2 石墨烯應用於溫度感測器 15
2.3 石墨烯之高溫退火與氣體吸附 21
第三章 實驗架構與流程 26
3.1 化學氣相沉積法成長石墨烯 28
3.1.1 催化材料之準備 29
3.1.2 成長方式與參數 30
3.1.3 石墨烯成長品質檢測 31
3.2 試片設計與製作 32
3.2.1 試片基材的準備 32
3.2.2 石墨烯之轉印步驟 32
3.2.3 電極設計與製作 33
3.3 實驗流程 34
3.3.1 系統穩定性與市售熱敏電阻實驗 34
3.2.1.1 系統穩定性實驗 34
3.2.1.2 市售熱敏電阻實驗 35
3.3.2 高純度銅箔製備石墨烯轉印一次之溫度感測實驗 37
3.3.2.1 高溫退火與自來水吸附實驗 37
3.3.2.2 高溫退火與去離子水吸附實驗 40
3.3.2.3 高溫退火與重水吸附實驗 40
3.3.3 高純度銅箔製備石墨烯轉印三次之溫度感測實驗 41
3.3.3.1 高溫退火與去離子水吸附實驗 41
3.3.3.2 不同氫氣與氬氣比例退火與去離子水吸附實驗 41
3.3.3.3 無退火與去離子水吸附實驗 41
3.3.4 高純度銅箔製備石墨烯轉印五次之溫度感測實驗 42
3.3.4.1 高溫退火與去離子水吸附實驗 42
3.3.5 銅箔膠帶製備石墨烯轉印三次之溫度感測實驗 42
3.3.5.1 高溫退火與去離子水吸附實驗 42
3.3.5.2 無退火與去離子水吸附實驗 42
第四章 實驗結果與討論 43
4.1 石墨烯製備結果 43
4.2 實驗結果 46
4.2.1 系統穩定性與市售熱敏電阻實驗 46
4.2.1.1 系統穩定性實驗 46
4.2.1.2 市售熱敏電阻實驗 47
4.2.2 高純度銅箔製備石墨烯轉印一次之溫度感測實驗 50
4.2.2.1 高溫退火與自來水吸附實驗 50
4.2.2.2 高溫退火與去離子水吸附實驗 52
4.2.2.3 高溫退火與重水吸附實驗 54
4.2.3 高純度銅箔製備石墨烯轉印三次之溫度感測實驗 56
4.2.3.1 高溫退火與去離子水吸附實驗 56
4.2.3.2 不同氫氣與氬氣比例退火與去離子水吸附實驗 58
4.2.3.3 無退火與去離子水吸附實驗 60
4.2.4 高純度銅箔製備石墨烯轉印五次之溫度感測實驗 62
4.2.4.1高溫退火與去離子水吸附實驗 62
4.2.5 銅箔膠帶製備石墨烯轉印三次之溫度感測實驗 64
4.2.5.1 高溫退火與去離子水吸附實驗 64
4.2.5.2 無退火與去離子水吸附實驗 66
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 72
第六章 參考文獻 74
第七章 附錄 79


[1]K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films,” science 306.5696 (2004): 666-669.
[2]Geim, Andre K., and Konstantin S. Novoselov, "The rise of graphene,” Nature materials 6.3 (2007): 183-191.
[3]D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, “Experimental review of graphene,” ISRN Condensed Matter Physics 2012 (2012).
[4]J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics: Condensed Matter 20.32 (2008): 323202.
[5]A. Phaedon, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nature nanotechnology 2.10 (2007): 605-615.
[6]M. Wilson, “Electrons in atomically thin carbon sheets behave like massless particles,” Physics Today 59.1 (2006): 21.
[7]P. R. Wallace, “The band theory of graphite,” Physical Review 71.9 (1947): 622.
[8]G. W. Semenoff, “Condensed-matter simulation of a three-dimensional anomaly,” Physical Review Letters 53.26 (1984): 2449.
[9]M. Terronesa, A. R. Botello-Méndezb, J. Campos-Delgadoc, F. López-Uríasd, Y. I. Vega-Cantúd, F. J. Rodríguez-Macíasd, A. L. Elíase, E. Muñoz-Sandovald, A. G. Cano-Márquezd, J. C. Charlierb, and H. Terronesb, “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today 5.4 (2010): 351-372.
[10]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320.5881 (2008): 1308-1308.
[11]S. Dusari, J. Barzola-Quiquia, P. Esquinazi, and N. García, “Ballistic transport at room temperature in micrometer-size graphite flakes,” Physical Review B 83.12 (2011): 125402.
[12]L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, “Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography,” Nature nanotechnology 3.7 (2008): 397-401.
[13]B. Hua, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Advanced Materials 23.9 (2011): 1089-1115.
[14]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” carbon 45.7 (2007): 1558-1565.
[15]C. Berger, Z. Song, T. Li, X. Li , A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” The Journal of Physical Chemistry B 108.52 (2004): 19912-19916.
[16]W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Grüneis, D. Haberer, R. Bozek, J. Krupka, and J. M. Baranowski "Graphene epitaxy by chemical vapor deposition on SiC,” Nano letters 11.4 (2011): 1786-1791.
[17]X. Li, W. Cai, J. An, S. Kim, J Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324.5932 (2009): 1312-1314.
[18]Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano letters 10.2 (2010): 490-493.
[19]S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology 5.8 (2010): 574-578.
[20]D. Y. Wang, I. S. Huang, P. H. Ho, S. S. Li, Y. C. Yeh, D. W. Wang, W. L. Chen, Y. Y. Lee, Y. M. Chang, C. C. Chen, C. T. Liang, and C. W. Chen, “Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films,” Advanced Materials 25.32 (2013): 4521-4526.
[21]X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. Chen, and J. G. Tiana, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon 56 (2013): 271-278
[22]L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports 473.5 (2009): 51-87.
[23]I. Calizo, D. Teweldebrhan, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates,” Journal of Physics: Conference Series. Vol. 109. No. 1. IOP Publishing, 2008.
[24]S. Lee, K. Lee, and Z. Zhong, “Wafer scale homogeneous bilayer graphene films by chemical vapor deposition,” Nano letters 10.11 (2010): 4702-4707.
[25]Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, “Probing Layer Number and Stacking Order of Few‐Layer Graphene by Raman Spectroscopy,” small 6.2 (2010): 195-200.
[26]W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S. S. Pei, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes,” Nanotechnology 23.3 (2011): 035603.
[27]卓傑企業有限公司, “溫度感測器與控制實驗系統:G34/EV,” Available: http://www.me.lhu.edu.tw/~sdchen/SensorLab/G34.pdf
[28]E. H. Hwang, and S. Das Sarma, “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B 77.11 (2008): 115449.
[29]E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Physical review letters 98.18 (2007): 186806.
[30]T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic transport in graphene: A semiclassical approach including midgap states,” Physical Review B 76.20 (2007): 205423.
[31]V. V. Cheianov, and V. I. Fal’ko, “Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene,” Physical review letters 97.22 (2006): 226801.
[32]F. T. Vasko, and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Physical Review B 76.23 (2007): 233404.
[33]J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature nanotechnology 3.4 (2008): 206-209.
[34]S. Fratini, and F. Guinea, “Substrate-limited electron dynamics in graphene,” Physical Review B 77.19 (2008): 195415.
[35]M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic structure of graphene on SiO2,” Nano letters 7.6 (2007): 1643-1648.
[36]E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface,” Proceedings of the National Academy of Sciences 104.22 (2007): 9209-9212.
[37]Q. Shao, G. Liu, D. Teweldebrhan, and A. A. Balandin, “High-temperature quenching of electrical resistance in graphene interconnects,” Applied Physics Letters 92.20 (2008): 202108.
[38]H. Al-Mumen, F. Rao, L. Dong, and W. Li, “Design, fabrication, and characterization of graphene thermistor,” Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. IEEE, 2013.
[39]C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS nano 9.2 (2015): 2130-2137.
[40]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature materials 6.9 (2007): 652-655.
[41]O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Physical Review B 77.12 (2008): 125416.
[42]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” The Journal of Physical Chemistry C 112.35 (2008): 13442-13446.
[43]Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” Journal of Raman Spectroscopy 41.5 (2010): 479-483.
[44]A. N. Sidorov, A. Sherehiy, R. Jayasinghe, R. Stallard, D. K. Benjamin, Q. Yu, Z. Liu, W. Wu, H. Cao, Y. P. Chen, Z. Jiang, and G. U. Sumanasekera, “Thermoelectric power of graphene as surface charge doping indicator,” Applied Physics Letters 99.1 (2011): 013115.
[45]林威廷, “水氣摻雜石墨烯之溫度感測器,” 國立臺灣大學機械工程學研究所學位論文 (2015): 1-75.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊