|
[1]K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films,” science 306.5696 (2004): 666-669. [2]Geim, Andre K., and Konstantin S. Novoselov, "The rise of graphene,” Nature materials 6.3 (2007): 183-191. [3]D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, “Experimental review of graphene,” ISRN Condensed Matter Physics 2012 (2012). [4]J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics: Condensed Matter 20.32 (2008): 323202. [5]A. Phaedon, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nature nanotechnology 2.10 (2007): 605-615. [6]M. Wilson, “Electrons in atomically thin carbon sheets behave like massless particles,” Physics Today 59.1 (2006): 21. [7]P. R. Wallace, “The band theory of graphite,” Physical Review 71.9 (1947): 622. [8]G. W. Semenoff, “Condensed-matter simulation of a three-dimensional anomaly,” Physical Review Letters 53.26 (1984): 2449. [9]M. Terronesa, A. R. Botello-Méndezb, J. Campos-Delgadoc, F. López-Uríasd, Y. I. Vega-Cantúd, F. J. Rodríguez-Macíasd, A. L. Elíase, E. Muñoz-Sandovald, A. G. Cano-Márquezd, J. C. Charlierb, and H. Terronesb, “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today 5.4 (2010): 351-372. [10]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320.5881 (2008): 1308-1308. [11]S. Dusari, J. Barzola-Quiquia, P. Esquinazi, and N. García, “Ballistic transport at room temperature in micrometer-size graphite flakes,” Physical Review B 83.12 (2011): 125402. [12]L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, “Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography,” Nature nanotechnology 3.7 (2008): 397-401. [13]B. Hua, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Advanced Materials 23.9 (2011): 1089-1115. [14]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” carbon 45.7 (2007): 1558-1565. [15]C. Berger, Z. Song, T. Li, X. Li , A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” The Journal of Physical Chemistry B 108.52 (2004): 19912-19916. [16]W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. E. Gaskell, A. Grüneis, D. Haberer, R. Bozek, J. Krupka, and J. M. Baranowski "Graphene epitaxy by chemical vapor deposition on SiC,” Nano letters 11.4 (2011): 1786-1791. [17]X. Li, W. Cai, J. An, S. Kim, J Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324.5932 (2009): 1312-1314. [18]Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano letters 10.2 (2010): 490-493. [19]S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology 5.8 (2010): 574-578. [20]D. Y. Wang, I. S. Huang, P. H. Ho, S. S. Li, Y. C. Yeh, D. W. Wang, W. L. Chen, Y. Y. Lee, Y. M. Chang, C. C. Chen, C. T. Liang, and C. W. Chen, “Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films,” Advanced Materials 25.32 (2013): 4521-4526. [21]X. D. Chen, Z. B. Liu, C. Y. Zheng, F. Xing, X. Q. Yan, Y. Chen, and J. G. Tiana, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon 56 (2013): 271-278 [22]L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports 473.5 (2009): 51-87. [23]I. Calizo, D. Teweldebrhan, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates,” Journal of Physics: Conference Series. Vol. 109. No. 1. IOP Publishing, 2008. [24]S. Lee, K. Lee, and Z. Zhong, “Wafer scale homogeneous bilayer graphene films by chemical vapor deposition,” Nano letters 10.11 (2010): 4702-4707. [25]Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, “Probing Layer Number and Stacking Order of Few‐Layer Graphene by Raman Spectroscopy,” small 6.2 (2010): 195-200. [26]W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S. S. Pei, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes,” Nanotechnology 23.3 (2011): 035603. [27]卓傑企業有限公司, “溫度感測器與控制實驗系統:G34/EV,” Available: http://www.me.lhu.edu.tw/~sdchen/SensorLab/G34.pdf [28]E. H. Hwang, and S. Das Sarma, “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B 77.11 (2008): 115449. [29]E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Physical review letters 98.18 (2007): 186806. [30]T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic transport in graphene: A semiclassical approach including midgap states,” Physical Review B 76.20 (2007): 205423. [31]V. V. Cheianov, and V. I. Fal’ko, “Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene,” Physical review letters 97.22 (2006): 226801. [32]F. T. Vasko, and V. Ryzhii, “Voltage and temperature dependencies of conductivity in gated graphene,” Physical Review B 76.23 (2007): 233404. [33]J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature nanotechnology 3.4 (2008): 206-209. [34]S. Fratini, and F. Guinea, “Substrate-limited electron dynamics in graphene,” Physical Review B 77.19 (2008): 195415. [35]M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic structure of graphene on SiO2,” Nano letters 7.6 (2007): 1643-1648. [36]E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface,” Proceedings of the National Academy of Sciences 104.22 (2007): 9209-9212. [37]Q. Shao, G. Liu, D. Teweldebrhan, and A. A. Balandin, “High-temperature quenching of electrical resistance in graphene interconnects,” Applied Physics Letters 92.20 (2008): 202108. [38]H. Al-Mumen, F. Rao, L. Dong, and W. Li, “Design, fabrication, and characterization of graphene thermistor,” Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. IEEE, 2013. [39]C. Yan, J. Wang, and P. S. Lee, “Stretchable graphene thermistor with tunable thermal index,” ACS nano 9.2 (2015): 2130-2137. [40]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature materials 6.9 (2007): 652-655. [41]O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Physical Review B 77.12 (2008): 125416. [42]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” The Journal of Physical Chemistry C 112.35 (2008): 13442-13446. [43]Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen, “The effect of vacuum annealing on graphene,” Journal of Raman Spectroscopy 41.5 (2010): 479-483. [44]A. N. Sidorov, A. Sherehiy, R. Jayasinghe, R. Stallard, D. K. Benjamin, Q. Yu, Z. Liu, W. Wu, H. Cao, Y. P. Chen, Z. Jiang, and G. U. Sumanasekera, “Thermoelectric power of graphene as surface charge doping indicator,” Applied Physics Letters 99.1 (2011): 013115. [45]林威廷, “水氣摻雜石墨烯之溫度感測器,” 國立臺灣大學機械工程學研究所學位論文 (2015): 1-75.
|