跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佩蓉
研究生(外文):Pei-Rong Li
論文名稱:常壓PECVD系統氣流場與電漿含前驅物硝酸鋅反應之模擬研究
論文名稱(外文):Flow Field and Plasma Reaction with Precursor Zinc Nitrate in a PECVD System
指導教授:潘國隆
指導教授(外文):Kou-Long Pan
口試委員:王興華魏大欽陳建彰
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:電漿輔助化學氣相沉積氮氣常壓噴流式電漿數值模擬前驅物硝酸鋅
外文關鍵詞:PECVDAPPJsimulationprecursorzinc nitrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文建立數值模型以分析PECVD製程中鍍膜區域流場結構變化以及噴頭內部電漿反應,包含許多物質且相互產生不同的化學反應,利用商用套裝軟體COMSOL Multiphysics5.2進行數值模型,使用紊流模型、熱傳模型、化學模型三種模型耦合進行計算。
首先常壓電漿外部流場模型可了解受氣流結構影響後的物種分布,並且應用於設計線型常壓電漿的抽氣系統。由常壓氮氣電漿噴流下游模型進行數值模擬,此模擬結果與實驗相符,皆在間距1 mm時放光強度突增,證明此熱流場模型耦合化學模型可用來模擬氮氣電漿反應。最後以電漿內部反應模型引入電子能量、電子密度函數,由可量測得電壓值及施加電功率與作為模型參數,模擬結果與實驗所量測得出口溫度做比較,在定性上有相同的趨勢。此模型可預測電漿頭內部的激發態物種量值、前驅物硝酸鋅熱分解形成氧化鋅以及內部混合氣體溫度分布。

This study is a numerical simulation of the flow field on the deposition region and the atmospheric pressure plasma jet (APPJ) in the PECVD manufacturing process. The plasma reaction includes mutually species and different chemical reactions. When doing simulation, we utilized commercial software COMSOL Multiphysic5.2. The turbulent model is coupled with heat transfer model and chemical model.
At first we analysis the configuration of flow field effect on the deposition region in the PECVD process. This model could apply on designing a system to collect the by-production for linear atmosphere pressure plasma. In continue, to verify the plasma reaction model, contrast the experimental result with simulation result. Establishing an APPJ model to simulate the downstream of fluent .The simulation result is consistence with the experiment. The visual light sudden expansion which occur at the gap is 1 mm.
It could be proof this model is feasible. In the last model, we defined the specific function of electron temperature and electron density which was add measured voltage and applied power be model parameters. We compared the simulation results with experimental results, and found qualitatively similar in outlet temperature. This model could predict the excited species concentration, zinc nitrate precursor thermal decomposed to form zinc oxide and temperature distribution of mixing gas.

誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
符號表 xi
第一章、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文總覽 2
第二章、文獻回顧 3
2.1 電漿簡介 3
2.2 常壓噴流式電漿與PECVD簡介 4
2.3 環境空氣對氮氣電漿之影響 7
2.4 常壓電漿流場模擬與化學模擬 10
2.5 氧化鋅薄膜簡介與前驅物相關模擬 14
第三章、研究方法 17
3.1 數值分析軟體 17
3.2 流場模型 18
3.2.1 紊流模型 18
3.2.2 化學模型 21
3.3 流場幾何設定 29
3.3.1 常壓線型電漿冷流場 29
3.3.2 AP-PECVD鍍膜系統與環境氣流場 32
3.3.3 常壓噴流式電漿下游模型 34
3.3.4 PECVD腔體內部模型 36
3.4 模擬驗證 40
3.4.1 網格收斂測試 40
3.4.2 化學模型驗證-噴流式電漿下游外觀比較 44
3.4.3 與實驗溫度數據驗證 47
第四章、結果與討論 50
4.1 線型電漿模型模擬抽氣流場 50
4.1.1 線形電漿原始幾何流場分布 50
4.1.2 加入抽氣孔下游區流場分布與濃度場 52
4.1.3 抽氣效率 58
4.2 氮氣常壓電漿裝置外圍大氣之影響 59
4.3 氮氣常壓電漿下游之改變玻璃管套與底板間距 61
4.3.1 噴流下游區域流場分布情形 61
4.3.2 噴流下游區域放光強度變化 66
4.3.3 噴流下游區域氧氣濃度分布及溫度分布 69
4.4 前驅物與電漿物種之反應 72
4.4.1 PECVD內部熱流場 72
4.4.2 考慮電子碰撞反應之放光情形 75
4.4.3 考慮前驅物與氮氣電漿之反應 78
第五章、結論與未來展望 80
5.1結論 80
5.2未來展望 81
參考文獻 82



1. Lieberman, M.A. and A.J. Lichtenberg, Principles of plasma discharges and materials processing [electronic resource] / Michael A. Lieberman, Allan J. Lichtenberg. 2005: Hoboken, N.J. : Wiley-Interscience, c2005.
2. Fridman, A.A., Plasma chemistry. 2008, New York: Cambridge University Press.
3. Schutze, A., et al., The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. Ieee Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
4. J. Park, J.Y.J., R. F. Hicks, and G. S. Selwyn, submitted for publication.
5. Vossen, J.L. and W. Kern, Thin film processes II. 1991, Boston: Academic Press.
6. Smith, D.L., Thin-film deposition : principles and practice. 1995, New York: McGraw-Hill.
7. Hsu, C.-C. and Y.-J. Yang, The Increase of the Jet Size of an Atmospheric-Pressure Plasma Jet by Ambient Air Control. IEEE Transactions on Plasma Science, 2010. 38(3): p. 496-499.
8. Reuter, S., et al., Controlling the Ambient Air Affected Reactive Species Composition in the Effluent of an Argon Plasma Jet. IEEE Transactions on Plasma Science, 2012. 40(11): p. 2788-2794.
9. McKelliget, J., et al., Temperature and velocity fields in a gas stream exiting a plasma torch.a mathematical model and its experimental verification. Plasma Chemistry and Plasma Processing, 1982. 2. 83
10. Tsai, I.H. and C.C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric-Pressure Nitrogen Plasma Jet. Ieee Transactions on Plasma Science, 2010. 38(12): p. 3387-3392.
11. Tsai, J.H., C.M. Hsu, and C.C. Hsu, Numerical Simulation of Downstream Kinetics of an Atmospheric Pressure Nitrogen Plasma Jet Using Laminar, Modified Laminar, and Turbulent Models. Plasma Chemistry and Plasma Processing, 2013. 33(6): p. 1121-1135.
12. Grunze, M., W. Hirschwald, and D. Hofmann, Zinc oxide Surface structure, stability, and mechanisms of surface reactions. Journal of Crystal Growth, 1981. 52: p. 241-249.
13. Nyffenegger, R.M., et al., A Hybrid Electrochemical or Chemical Synthesis of Zinc Oxide Nanoparticles and Optically Intrinsic Thin Films. Chem. Mater., 1998. 10: p. 1120-1129.
14. Barankin, M.D., et al., Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 2007. 91(10): p. 924-930.
15. Hsu, C.-M., et al., Deposition of ZnO Thin Films by an Atmospheric Pressure Plasma Jet-Assisted Process The Selection of Precursors. IEEE Transactions On Plasma Science, 2015. 43.
16. Biswick, T., et al., The role of anhydrous zinc nitrate in the thermal decomposition of the zinc hydroxy nitrates Zn5(OH)8(NO3)2·2H2O and ZnOHNO3·H2O. Journal of Solid State Chemistry, 2007. 180(4): p. 1171-1179.
17. Campbell, I.D., E.S.R. Investigation of the Thermal Decomposition of Zinc Nitrate Hexahydrate. J. Chem. Soc., 1976. 84
18. Kozak, A.J., K. Wieczorek-Ciurowa, and A. Kozak, The Thermal Transformations In Zn(NO3)2-H2O(1:6) System. Journal of Thermal Analysis and Calorimetry, 2003. 74: p. 497-502.
19. Małecka, B., et al., Mass spectral studies on the mechanism of thermal decomposition of Zn(NO3)2·nH2O. Thermochimica Acta, 2003. 404(1-2): p. 125-132.
20. 林心恬, 大氣電漿沉積大面積氧化鋅薄膜與材料性質分布. 國立台灣大學機械工程所碩士論文, 2015.
21. Addison, C.C., J. Lewis, and R. Thompson, The Liquid Dinitrogen Tetroxide Solvent System. Part VIII Products of Reaction Zinc With Liquid Dinitrogen Tetroxide. J. Chem. Soc., 1951.
22. Wolden, C.A., The Role of Oxygen Dissociation in Plasma Enhanced Chemical Vapor Deposition of Zinc Oxide from Oxygen and Diethyl Zinc. Plasma Chemistry and Plasma Processing, 2005. 25(2): p. 169-192.
23. 郭延昇, 常壓PECVD系統內氣流混合以及電漿反應之研究與設計. 國立台灣大學機械所碩士論文., 2014.
24. Capitelli, M., et al., Plasma kinetics in atmospheric gases. Springer series on atomic, optical, and plasma physics. 2000, New York: Springer.
25. Kossyi, I.A., et al., Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science & Technology, 1992. 1(3): p. 207-220.
26. Moravej, M., et al., Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Science & Technology, 2006. 15(2): p. 204-210.
85
27. Chang, Z.-S., et al., Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet. Physics of Plasmas, 2012. 19(7): p. 073513.
28. Itikawa, Y., Cross Sections for Electron Collisions with Nitrogen Molecules. Journal of Physical and Chemical Reference Data, 2006. 35(1): p. 31.
29. 姜愷傑, 直流脈衝大氣壓電漿噴流塗布氧化鋅摻鎵薄膜製成監控. 國立台灣大學機械所碩士論文, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top