跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方為弘
研究生(外文):Wei-Hung Fang
論文名稱:燃料電池電動車混合電力系統之研發
論文名稱(外文):The Development of the PEMFC Hybrid Power System for an Electric Vehicle
指導教授:王富正
指導教授(外文):Fu-Cheng Wang
口試委員:顏家鈺蘇偉儁蔡宗惠
口試委員(外文):Jia-Yush YenWei-Jiun SuTzung-Huei Tsai
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:190
中文關鍵詞:燃料電池化學產氫硼氫化鈉混和電力系統系統整合
外文關鍵詞:Fuel cellChemical hydrogen generationSodium borohydrideHybrid power systemSystem integration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文開發一台綠能電動車的混合動力系統,以3kW燃料電池控制系統作為主電力源,整合太陽能系統,二次電池系統與化學產氫系統,並搭配有效的電池管理策略與燃料電池能源管理策略,進行綠能電動車供電系統的開發。
電動車具有高效率、操作安靜、無廢氣排放等優點,但純電池電動車行程卻受到電池容量與性能的限制,於是有人提出使用燃料電池與二次電池混合使用的燃料電池電動車,但燃料電池仍舊受限於其燃料—氫氣的攜帶容量與貯存問題,為此我們發展出一套結合化學產氫系統的燃料電池電動車,如此僅需攜帶足夠的化學藥品並搭配適當的電力管理策略,便可以無限地延長電動車的續航力。本論文包含四個主要工作:子系統模組化、電力管理策略、電動車全車整合、及SimPowerSystem模擬與分析。
首先,我們先將各個子系統的電路模組化,並設計控制器安裝於各子系統上,使其可以獨立運作。其次,我們將燃料電池系統搭配converter作為主電力源,搭接兩組磷酸鋰鐵二次電池系統,並設計適當的管理策略,發展串並聯混合電力鏈。再則,我們以化學產氫系統作為氫氣供應來源,並以太陽能電池做為額外的電力源,利用各項電力元件與微控制器,完成燃料電池電動車的整合。最後,我們使用Matlab/SimPowerSystem建立全車模型,並進行模擬與實驗比較,分析此系統的可行性與優點,並顯示模型可以準確估測真實系統之響應結果。
此外,我們發展的電動車亦可作為移動式電力站使用,對於供應定置型負載也有不錯的效用;因為現階段綠能成本相對較高,所以我們發展了一套分析移動式電力站成本的方法,並進行最佳化配置的分析及設計。


This thesis develops a hybrid Proton Exchange Membrane Fuel Cell (PEMFC) electric vehicle. The hybrid power system consists of a 3kW PEMFC, PV arrays, secondary battery sets, and a chemical hydrogen generation system. We further design battery management and energy control stratigies to enhance the system’s energy efficiency.
Electric vehicles have the advantages of high efficiency, quiet operation, zero emission and diversity of electric sources. But the moving ranges of pure battery electric vehicles are limited by the battery capacity. Thus, hybrid PEMFC vehicles, which consist of PEMFC and secondary battery, were developed to extend the travelling range. However, the carry and storage of hydrogen are still problematic. Therefore, we design a chemical hydrogen generation system so that the driving distance can be extended by carrying sufficient chemical materials.
This thesis contains four main tasks: subsystem modules, energy management design, system integration, and SimPowerSystem simulation and analysis. First, we simplify the subsystem control circuits so that the subsystems can work independently., Second, we design a hybrid power train that is composed of a PEMFC, a DC/DC converter, two lithium-ion battery sets, and electric components. We also design proper power management strategies so that the vehicle can be continuousely operated. Third, we integrate the PV arrays as an extra energy source, and build the chemical hydrogen generation system that can continuously provide hydrogen fuel. Last, we use Matlab/SimPowerSystem to build the hybrid electric vehicle model, and tune model parameters based on experimental data. We further conduct experiments for verification and show that the model can successfully predict the system responses.
Furthermore, the developed hybrid electric vehicle can be used as a movable hybrid power station, which can regulate the grid power or provide power for remote areas. Based on these ideas, we further perform cost analysis and model optimization for custmized hybrid power systems. In the future, the proposed PEMFC electric vehicle can be developed as both transportation and stationary hybrid power systems.


致謝 I
中文摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XIX
符號表 XXII
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 各章摘要 3
第二章 電動車子系統介紹 5
2.1 燃料電池系統 5
2.1.1 燃料電池構造與發電原理 5
2.1.2 PEMFC理論及特性 9
2.1.3 PEMFC燃料電池硬體架構 13
2.1.4 PEMFC燃料電池系統溫度控制 17
2.1.5 直流/直流轉換器與逆變器 17
2.2 太陽能系統 18
2.3 化學產氫系統 22
2.3.1 反應器與催化劑 26
2.3.2 氣液分離器設計 26
2.3.3 電磁閥與感應器 27
2.3.4 系統散熱設計 30
2.4 二次電池系統 35
2.4.1 二次電池的電力參數 37
2.4.2 二次電池的充電方式 39
第三章 電動車系統整合硬體與設計 45
3.1 系統架構與主電力鏈規劃 45
3.2 硬體配置與運作流程 46
3.3 開關控制板與輔助電力鏈架設 49
3.4 繼電器與驅動電路 53
3.5 信號擷取與量測電路 59
3.6 燃料電池整合電路與控制 61
3.7 人機介面與顯示監控 67
第四章 電動車系統動態與性能測試 69
4.1 電動車規格介紹 69
4.2 電動車測試路線規劃 70
4.3 電動車Driving cycle量測 73
4.4 全車系統整合上路測試 75
4.5 續航力 78
第五章 二次電池管理策略比較分析與上路結果 81
5.1 電池殘電量估測 81
5.2 電力管理架構 83
5.2.1 串聯式電力鏈 84
5.2.2 串聯測試 85
5.2.3 並聯式電力鏈 88
5.2.4 並聯測試 89
5.3 混合電力鏈 92
5.4 不同路線上路測試結果分析 94
第六章 電動車系統動態模擬 101
6.1 電動車混合電力鏈模型建立 101
6.2 全車模擬 103
6.2.1 串聯電力鏈模擬驗證 104
6.2.2 並聯電力鏈模擬驗證 107
6.3 系統成本分析 110
6.3.1 定義與設定成本相關參數 110
6.3.2 行駛里程指標 117
第七章 移動式電力站 139
7.1 能量管理策略 139
7.2 不同負載測試 141
7.3 系統設計與最佳化分析 150
7.3.1 可靠度指標 151
7.3.2 規格與數量分析 152
第八章 結論與未來展望 169
8.1 結論 169
8.2 未來展望 170
參考文獻 171



[1]Han, I.S., Kho, B.K., Cho, S. , “Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle”, J Power Sources , Volume 304, Pages 244–254, 2016.
[2]Gao, D.,Jin,Z., Lu, Q. , “Energy management strategy based on fuzzy logic for a fuel cell hybrid bus”, Journal of Power Sources, 185 Pages 311–317,2008.
[3]Hsiao,D.R. ,Huang,B.W. , Shih,N.C., “Development and dynamic characteristics of hybrid fuel cell-powered mini-train system”, International journal of hydrogen energy, 37 Pages 1058-1066,2012.
[4]Toyota FCV:
http://www.toyota.com/mirai/fcv.html
[5]Japan Patent Office:https://www19.j-platpat.inpit.go.jp/PA1/cgi-bin/PA1LIST
[6]Honda FCV:
http://automobiles.honda.com/clarity
[7]Bernadi,D.M., Verbrugge, M.W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte”, AiChE Journal, 137(8) Pages 1151-1163, 1991
[8]Ceraolo, M. , Miulli ,C. ,Pozio A., “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description”, Journal of Power Sources, 113(1) Pages 131-144, 2003.
[9]Wang ,F.C., Yang ,Y.P., “System Identification and Robust Control of a Portable Proton Exchange Membrane Fuel-Cell System”, Journal of Power Sources, 164(2) Pages 704-712, 2007
[10]Amirinejad, M., Rowshanzamir, S. and Eikani, M. H., “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 161(2) Pages 872-875 , 2006.
[11]Souleman Njoya M.,Olivier Tremblay, Louis-A Dessaint, “A Generic Fuel Cell Model for the Simulation of Fuel Cell Vehicles” IEEE , Pages 1722-1729, 2009.
[12]Wang ,F.C., “Proton Exchange Membrane Fuel Cell System Identification and Control - Part II: H-infinity Based Robust Control”, Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, 2006.
[13]Yang, Y.P., Wang, F.C., “Low Power Proton Exchange Membrane Fuel Cell System Identification and Adaptive Control”, Journal of Power Sources, 164(2) Pages 761-771, 2007.
[14]Liso, V., Nielsen, M. P., Kær, S. K., and Mortensen, H. H.,“ Thermal modeling and temperature control of a PEM fuel cell system for forklift applications,” International Journal of Hydrogen Energy, 39(16) Pages 8410–8420, 2014.
[15]Vega-Leal, A.P., et al., “Design of control systems for portable PEM fuel cells,” Journal of Power Sources, 169(1) Pages 194-197, 2007.
[16]Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh,“Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries”, Applied Energy, 86 Pages 1506-1511, 2009.
[17]Olivier Tremblay, Louis-A. Dessaint,“Experimental Validation of a Battery Dynamic Model for EV Applications” , World Electric Vehicle Journal, vol.3,2009.
[18]Lee ,H.S., Jeong ,K.S. , Oh ,B.S., “An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles”, International Journal of Hydrogen Energy, 28(2) Pages 215-222, 2003.
[19]Nadal , M., Barbir ,F., “Development of a hybrid fuel cell/battery powered electric vehicle”, International Journal of Hydrogen Energy, Vol. 21, no.6, Pages 497–505, 1996
[20]Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H., “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, International Journal of Hydrogen Energy, Volume 27, Pages 1029–1034, 2002.
[21]Kojima, Y., Suzuki, K., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., Matsumoto, S., “Development of 10 kW-scale hydrogen generator using chemical hydride”, Journal of Power Sources, Volume 125, Pages 22-26, 2004.
[22]Zhang, J.S., Zheng, Y., Gore, J.P., Fisher, T.S., “1 kWe sodium borohydride hydrogen generation system: Part I: Experimental study”, Journal of Power Sources, Volume 165, Pages 844–853, 2007.
[23]黃鎮江編著,燃料電池,修訂二版,全華圖書,台北市,2007。
[24]Larmine, J. and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, 2003
[25]Ballard Mark1020 ACST PEMFC stack. Available at: http://140.112.14.7/~sic/PaperMaterial/MAN5100192_new%20guide_mark1020.pdf
[26]Gas pressure regulator, July 06, 2012: www.fishercommercialservice.com/
[27]郭易夫,燃料電池系統強韌性分析,國立台灣大學機械工程研究所碩士論文,2014。
[28]Skinner: solenoid valve, July 06, 2012: www.phionline.com/M%20VALVE_ACTUATION.pdf
[29]Li, Z.P., Morigazaki N., Liu B.H., Suda S., “Preparation of sodium borohydride by the reaction of MgH2 with dehydrated borax through ball milling at room temperature”, Journal of Alloys and Compounds, Volume 349, Pages 232-236, 2003.
[30]硼氫化鈉:http://zh.wikipedia.org/wiki/%E7%A1%BC%E6%B0%A2%E5%8C%96%E9%92%A0
[31]Kaufman, C.M., Sen, B.J., “Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts”, Journal of the Chemical Society, Volume 2, Pages 307–313, 1985.
[32]Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., “Sodium borohydride, its use as a reducing agent and in the generation of hydrogen”, Journal of the American Chemical Society, Volume 75, Pages 215–219, 1953.
[33]Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst”, Journal of Power Sources, Volume 85, Pages 186 –189, 2000.
[34]Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H., “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, International Journal of Hydrogen Energy, Volume 27, Pages 1029–1034, 2002.
[35]Arzac, G.M., Hufschmidt, D., De Haro, M.C.J., Fernández, A., Sarmiento, B., Jiménez, M.A., Jiménez. M.M., “Deactivation, reactivation and memory effect on Co–B catalyst for sodium borohydride hydrolysis operating in high conversion conditions”, International Journal of Hydrogen Energy, Volume 37, Pages 14373-14381, 2012.
[36]Kim, S.J., Lee, J., Kong, K.Y, Jung, C.R, Min, I.G., Lee, S.Y., Kim, H.J., Nam, S.W., Lim, T.H., “Hydrogen generation system using sodium borohydride for operation of a 400 W-scale polymer electrolyte fuel cell stack”, Journal of Power Sources, Volume 170, Pages 412–418, 2007.
[37]李秀晟,化學產氫系統之開發與整合:應用於燃料電池混合電力系統,國立台灣大學機械工程研究所碩士論文,2015。
[38]Burkert電磁閥:
https://www.burkert.com/type/0330
[39]Huba Control壓力感測器:
http://www.hubacontrol.com/en/products/pressure-transmitter/pressure-sensor-528/
[40]Bronkhorst液體流量計:
http://www.massflow-online.com/shop/en/magnetic-flow-meter-0-25-5-lpm-157.html
[41]Alicat氣體流量計:
www.alicatscientific.com/
[42]SD-100溫度傳送器:
www.gigarise.com.tw/
[43]台塑鋰鐵電池SB012036E規格:
http://www.formosabattery.com/j2ac/index/index.jsp
[44]內田隆裕,圖解電池入門,世茂出版公司, 2010。
[45]OMRON繼電器: https://www.omron.com/ecb/products/dry/3/g9ea-1.html
[46]LM2596芯片: http://www.alldatasheet.com/datasheet-pdf/pdf/8744/NSC/LM2596.html
[47]光耦合器pc817: http://www.alldatasheet.com/datasheet-pdf/pdf/43371/SHARP/PC817.html
[48]TTL IC 74244: http://www.alldatasheet.com/datasheet-pdf/pdf/51057/FAIRCHILD/74244.html
[49]N通道場效電晶體IRF840: http://www.alldatasheet.com/datasheet-pdf/pdf/17804/PHILIPS/IRF840.html
[50]KDY33電壓傳送器: http://www.sbond.asia/download/KD+KD2.pdf
[51]MCP4725 DAC模組: https://www.sparkfun.com/datasheets/BreakoutBoards/MCP4725.pdf
[52]Yang, H.X., Zhou, W., Lou, C.Z. , “Optimal design and techno-economic analysis of a hybrid solar-wind power generation system,’’ Applied Energy, 86(2) Pages 163-169, 2009.
[53]行政院主計處,消費者物價指數。
Available at: http://www.dgbas.gov.tw/point.asp?index=2
[54]Battery University. Available at: http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
[55]Abbes,D. , Martinez, A., Champenois, G. , “Life cycle cost, embodied energy and loss of power supplyprobability for the optimal design of hybrid power systems,’’ Mathematics and Computers in Simulation, 98, Pages 46-62, 2014.
[56]Kaabeche, A., Belhamel, M. , Ibtiouen, R. , “Optimal sizing method for stand-alone
hybrid PV/wind power generation system,’’ Revue des Energies Renouvelables SMEE’10 Bou Ismail Tipaza, Pages 205–213, 2010.
[57]Yang,H. , Lu, L. , Zhou, W., “A novel optimization sizing model for hybrid solar-wind power generation system,’’ Solar Energy, 81(1) Pages 76–84, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊