|
Bibliography
[1] H. G. Andrews, E. A. Eccles, W. C. E. Schofield, and J. P. S. Badyal, "Three- dimensional hierarchical structures for fog harvesting," Langmuir, vol. 27, pp.
3798-3802, 2011.
[2] A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, "Water harvest via
dewing," Langmuir, vol. 28, pp. 10183-10191, 2012.
[3] A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, "Advances in seawater
desalination technologies," Desalination, vol. 221, pp. 47-69, 2008.
[4] T. Humplik, J. Lee, S. C. O''Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M.
A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, "Nanostructured
materials for water desalination," Nanotechnology, vol. 22, 292001, 2011.
[5] J. M. Beer, "High efficiency electric power generation: The environmental
role," Progress in Energy and Combustion Science, vol. 33, pp. 107-134,
2007.
[6] R. J. McGlen, R. Jachuck, and S. Lin, "Integrated thermal management
techniques for high power electronic devices," Applied Thermal Engineering,
vol. 24, pp. 1143-1156, 2004.
[7] T. B. Peters, M. McCarthy, J. Allison, F. A. Dominguez-Espinosa, D. Jenicek,
H. A. Kariya, W. L. Staats, J. G. Brisson, J. H. Lang, and E. N. Wang, "Design
of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High
Performance Electronics," IEEE Transactions on Components Packaging and
Manufacturing Technology, vol. 2, pp. 1637-1648, 2012.
[8] W. Nusselt, "The surface condensation of water vapour.," Zeitschrift Des
Vereines Deutscher Ingenieure, vol. 60, pp. 541-546, 1916.
[9] E. Schmidt, W. Schurig, and W. Sellschopp, "Condensation of water vapour in
film- and drop form," Zeitschrift Des Vereines Deutscher Ingenieure, vol. 74,
pp. 544-544, 1930.
[10] J. W. Rose, "Dropwise condensation theory and experiment: a review,"
Proceedings of the Institution of Mechanical Engineers Part a-Journal of
Power and Energy, vol. 216, pp. 115-128, 2002.
[11] D. W. Tanner, D. West, D. Pope, and C. J. Potter, "Promotion of dropwise
condensation by monolayers of radioactive fatty acids .I. stearic acid on
copper surfaces," Journal of Applied Chemistry, vol. 14, pp. 361-369, 1964.
[12] M. P. Bonnar, B. M. Burnside, J. Christie, E. J. Sceal, C. E. Troupe, and J. I. B.
Wilson, "Hydrophobic coatings from plasma polymerized
vinyltrimethylsilane," Chemical Vapor Deposition, vol. 5, pp. 117-125, 1999.
[13] D. W. Woodruff and J. W. Westwater, "Steam condensation on electroplated
gold - effect of plating thickness," International Journal of Heat and Mass
Transfer, vol. 22, pp. 629-632, 1979.
[14] G. A. Oneill and J. W. Westwater, "Dropwise condensation of steam on
electroplated silver surfaces," International Journal of Heat and Mass
Transfer, vol. 27, pp. 1539-1549, 1984.
[15] K. M. Holden, A. S. Wanniarachchi, P. J. Marto, D. H. Boone, and J. W. Rose,
"The use of organic coatings to promote dropwise condensation of steam,"
Journal of Heat Transfer-Transactions of the ASME, vol. 109, pp. 768-774,
1987.
[16] A. Taniguchi and Y. H. Mori, "Effectiveness of composite copper graphite
fluoride platings for promoting dropwise condensation of steam - a
Preliminary-Study," International Communications in Heat and Mass
Transfer, vol. 21, pp. 619-627, 1994.
[17] A. K. Das, H. P. Kilty, P. J. Marto, A. Kumar, and G. B. Andeen, "Dropwise
condensation of steam on horizontal corrugated tubes using an organic self- assembled monolayer coating," Journal of Enhanced Heat Transfer, vol. 7, pp.
109-123, 2000.
[18] P. Roach, N. J. Shirtcliffe, and M. I. Newton, "Progess in superhydrophobic
surface development," Soft Matter, vol. 4, pp. 224-240, 2008.
[19] C. H. Chen, Q. J. Cai, C. L. Tsai, C. L. Chen, G. Y. Xiong, Y. Yu, and Z. F.
Ren, "Dropwise condensation on superhydrophobic surfaces with two-tier
roughness," Applied Physics Letters, vol. 90, 173108, 2007.
[20] Y. T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, "Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves,"
Nanotechnology, vol. 17, pp. 1359-1362, 2006.
[21] I. Orkan Ucar and H. Y. Erbil, "Droplet condensation on polymer surfaces: A
review," Turkish Journal of Chemistry, vol. 37, pp. 643-674, 2013.
[22] C. Dorrer and J. Ruhe, "Advancing and receding motion of droplets on
ultrahydrophobic post surfaces," Langmuir, vol. 22, pp. 7652-7657, 2006.
[23] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu,
L. Jiang, and D. B. Zhu, "Super-hydrophobic surfaces: From natural to
artificial," Advanced Materials, vol. 14, pp. 1857-1860, 2002.
[24] D. Oner and T. J. McCarthy, "Ultrahydrophobic surfaces. Effects of
topography length scales on wettability," Langmuir, vol. 16, pp. 7777-7782,
2000.
[25] J. Bravo, L. Zhai, Z. Z. Wu, R. E. Cohen, and M. F. Rubner, "Transparent
superhydrophobic films based on silica nanoparticles," Langmuir, vol. 23, pp.
7293-7298, 2007.
[26] A. V. Rao, S. S. Latthe, S. A. Mahadik, and C. Kappenstein, "Mechanically
stable and corrosion resistant superhydrophobic sol-gel coatings on copper
substrate," Applied Surface Science, vol. 257, pp. 5772-5776, 2011.
[27] S. Vemuri and K. J. Kim, "An experimental and theoretical study on the
concept of dropwise condensation," International Journal of Heat and Mass
Transfer, vol. 49, pp. 649-657, 2006.
[28] S. Vemuri, K. J. Kim, B. D. Wood, S. Govindaraju, and T. W. Bell, "Long term
testing for dropwise condensation using self-assembled monolayer coatings of
n-octadecyl mercaptan," Applied Thermal Engineering, vol. 26, pp. 421-429,
2006.
[29] A. T. Paxson, J. L. Yague, K. K. Gleason, and K. K. Varanasi, "Stable
dropwise condensation for enhancing heat transfer via the initiated chemical
vapor deposition (iCVD) of grafted polymer films," Advanced Materials, vol.
26, pp. 418-423, 2014.
[30] R. D. Narhe and D. A. Beysens, "Growth dynamics of water drops on a
square-pattern rough hydrophobic surface," Langmuir, vol. 23, pp. 6486-6489,
2007.
[31] C. Dorrer and J. Ruhe, "Condensation and wetting transitions on
microstructured ultrahydrophobic surfaces," Langmuir, vol. 23, pp. 3820-3824,
2007.
[32] C. Dorrer and J. Ruhe, "Some thoughts on superhydrophobic wetting," Soft
Matter, vol. 5, pp. 51-61, 2009.
[33] Y. T. Cheng and D. E. Rodak, "Is the lotus leaf superhydrophobic?," Applied
Physics Letters, vol. 86, 144101, 2005.
[34] C. P. Migliaccio, "Resonance-induced condensate shedding for high-efficiency
heat transfer," International Journal of Heat and Mass Transfer, vol. 79, pp.
720-726, 2014.
[35] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, "Vibration-induced
Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces,"
Applied Physics Letters, vol. 104, 181601, 2014.
[36] E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, "Resonance Cassie- Wenzel wetting transition for horizontally vibrated drops deposited on a rough
surface," Langmuir, vol. 23, pp. 12217-12221, 2007.
[37] J. B. Boreyko and C. H. Chen, "Restoring Superhydrophobicity of Lotus
Leaves with Vibration-Induced Dewetting," Physical Review Letters, vol. 103,
174502, 2009.
[38] J. B. Boreyko and C. H. Chen, "Self-propelled dropwise condensate on
superhydrophobic surfaces," Physical Review Letters, vol. 103, 184501, 2009.
[39] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang,
"Jumping-droplet-enhanced condensation on scalable superhydrophobic
nanostructured surfaces," Nano Letters, vol. 13, pp. 179-187, 2013.
[40] J. T. Cheng, A. Vandadi, and C. L. Chen, "Condensation heat transfer on two- tier superhydrophobic surfaces," Applied Physics Letters, vol. 101, 131909,
2012.
[41] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W.
Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, "How nanorough is rough
enough to make a surface superhydrophobic during water condensation?," Soft
Matter, vol. 8, pp. 8786-8794, 2012.
[42] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang,
"Condensation on superhydrophobic surfaces: the role of local energy barriers
and structure length scale," Langmuir, vol. 28, pp. 14424-14432, 2012.
[43] R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, "Immersion condensation
on oil-infused heterogeneous surfaces for enhanced heat transfer," Scientific
Reports, vol. 3, 1988, 2013.
[44] K. K. Varanasi, M. Hsu, N. Bhate, W. S. Yang, and T. Deng, "Spatial control in
the heterogeneous nucleation of water," Applied Physics Letters, vol. 95,
094101, 2009.
[45] C. W. Lo, C. C. Wang, and M. C. Lu, "Spatial control of heterogeneous
nucleation on the superhydrophobic nanowire array," Advanced Functional
Materials, vol. 24, pp. 1211-1217, 2014.
[46] A. R. Parker and C. R. Lawrence, "Water capture by a desert beetle," Nature,
vol. 414, pp. 33-34, 2001.
[47] S. S. Beaini and V. P. Carey, "Strategies for developing surfaces to enhance
dropwise condensation: exploring contact angles, droplet sizes, and patterning
surfaces," Journal of Enhanced Heat Transfer, vol. 20, pp. 33-42, 2013.
[48] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, "Enhancement of
condensation heat transfer with patterned surfaces," International Journal of
Heat and Mass Transfer, vol. 71, pp. 675-681, 2014.
[49] A. M. Macner, S. Daniel, and P. H. Steen, "Condensation on surface energy
gradient shifts drop size distribution toward small drops," Langmuir, vol. 30,
pp. 1788-1798, 2014.
[50] C. C. Hsu, T. W. Su, and P. H. Chen, "Pool boiling of nanoparticle-modified
surface with interlaced wettability," Nanoscale Research Letters, vol. 7, 259,
2012.
[51] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, "Analysis of
condensation heat transfer enhancement with dropwise-filmwise hybrid
surface: Droplet sizes effect," International Journal of Heat and Mass
Transfer, vol. 77, pp. 785-794, 2014.
[52] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, "Experimental
investigation on steam condensation heat transfer enhancement with vertically
patterned hydrophobic-hydrophilic hybrid surfaces," International Journal of
Heat and Mass Transfer, vol. 83, pp. 27-38, 2015.
[53] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis,
"Enhancing dropwise condensation through bioinspired wettability
patterning," Langmuir, vol. 30, pp. 13103-13115, 2014.
[54] G. Koch, D. C. Zhang, and A. Leipertz, "Condensation of steam on the surface
of hard coated copper discs," Heat and Mass Transfer, vol. 32, pp. 149-156,
1997.
[55] R. W. Bonner, "Dropwise condensation on surfaces with graded
hydrophobicity," Ht2009: Proceedings of the ASME Summer Heat Transfer,
Vol 3, pp. 491-495, 2009.
[56] J. B. Boreyko, Y. J. Zhao, and C. H. Chen, "Planar jumping-drop thermal
diodes," Applied Physics Letters, vol. 99, 234105, 2011.
[57] J. B. Boreyko and C. H. Chen, "Vapor chambers with jumping-drop liquid
return from superhydrophobic condensers," International Journal of Heat and
Mass Transfer, vol. 61, pp. 409-418, 2013.
[58] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial
and Engineering Chemistry, vol. 28, pp. 988-994, 1936.
[59] A. Lafuma and D. Quere, "Superhydrophobic states," Nature Materials, vol. 2,
pp. 457-460, 2003.
[60] A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces.," Transactions
of the Faraday Society, vol. 40, pp. 0546-0550, 1944.
[61] J. Bico, U. Thiele, and D. Quere, "Wetting of textured surfaces," Colloids and
Surfaces a-Physicochemical and Engineering Aspects, vol. 206, pp. 41-46,
2002.
[62] L. C. Gao and T. J. McCarthy, "How Wenzel and Cassie were wrong,"
Langmuir, vol. 23, pp. 3762-3765, 2007.
[63] D. Quere, "Wetting and roughness," Annual Review of Materials Research,
vol. 38, pp. 71-99, 2008.
[64] N. Miljkovic, R. Enright, and E. N. Wang, "Effect of droplet morphology on
growth dynamics and heat transfer during condensation on superhydrophobic
nanostructured surfaces," ACS Nano, vol. 6, pp. 1776-1785, 2012.
[65] J. L. Viovy, D. Beysens, and C. M. Knobler, "Scaling description for the
growth of condensation patterns on surfaces," Physical Review A, vol. 37, pp.
4965-4970, 1988.
[66] D. Beysens, "The formation of dew," Atmospheric Research, vol. 39, pp. 215-
237, 1995.
[67] R. D. Narhe and D. A. Beysens, "Nucleation and growth on a
superhydrophobic grooved surface," Physical Review Letters, vol. 93, 076103,
2004.
[68] R. D. Narhe and D. A. Beysens, "Water condensation on a super-hydrophobic
spike surface," Europhysics Letters, vol. 75, pp. 98-104, 2006.
[69] D. Beysens and C. M. Knobler, "Growth of breath figures," Physical Review
Letters, vol. 57, pp. 1433-1436, 1986.
[70] D. Fritter, C. M. Knobler, and D. A. Beysens, "Experiments and simulation of
the growth of droplets on a surface (Breath Figures)," Physical Review A, vol.
43, pp. 2858-2869, 1991.
[71] C. W. Lo, C. C. Wang, and M. C. Lu, "Scale effect on dropwise condensation
on superhydrophobic surfaces," ACS Applied Materials & Interfaces, vol. 6,
pp. 14353-14359, 2014.
[72] Minkowyc.W. J. and E. M. Sparrow, "Condensation heat transfer in presence
of noncondensables interfacial resistance superheating variable properties and
diffusion," International Journal of Heat and Mass Transfer, vol. 9, pp. 1125-
1144, 1966.
[73] E. M. Sparrow, Minkowyc.W. J., and M. Saddy, "Forced convection
condensation in presence of noncondensables and interfacial resistance,"
International Journal of Heat and Mass Transfer, vol. 10, pp. 1829-1845,
1967.
[74] S. K. Park, M. H. Kim, and K. J. Yoo, "Effects of a wavy interface on steam- air condensation on a vertical surface," International Journal of Multiphase
Flow, vol. 23, pp. 1031-1042, 1997.
[75] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, and Y. Zhang, "Condensation heat
transfer enhancement in the presence of non-condensable gas using the
interfacial effect of dropwise condensation," International Journal of Heat and
Mass Transfer, vol. 51, pp. 1728-1737, 2008.
[76] I. K. Huhtiniemi and M. L. Corradini, "Condensation in the presence of
noncondensable gases," Nuclear Engineering and Design, vol. 141, pp. 429-
446, 1993.
[77] J. R. Taylor, An introduction to error analysis: the study of uncertainties in
physical measurements , 2nd ed. Sausalito, California: University Science
Books, 1997.
|