跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李祐安
研究生(外文):You-An Lee
論文名稱:交錯潤濕性表面對冷凝熱傳之增強
論文名稱(外文):Condensation Heat Transfer Enhancement on Surfaces with Interlaced Wettability
指導教授:陳炳煇陳炳煇引用關係
口試委員:陳瑤明楊馥菱
口試日期:2015-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:85
中文關鍵詞:冷凝熱傳表面改質交錯濕潤性
外文關鍵詞:condensation heat transfersurface modificationinterlaced wettability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究欲探討以超疏水為基底之交錯濕潤性表面,對含有空氣之水蒸氣冷
凝熱傳之影響。分別在水平向下及垂直的冷凝面,進行不同改質條紋配置之實驗。實驗結果顯示,表面條紋配置、表面方向、表面過冷度,以及不可凝結氣體均會對冷凝熱傳產生影響。交錯濕潤性表面在水平及垂直時,分別呈現相反的熱傳趨勢。對水平冷凝面而言,改質條紋越寬,會有越好的熱傳增強效果;反之,改質條紋較細的交錯濕潤性表面,在表面垂直時熱傳效果較佳。此外,交錯濕潤性表面有助於擾動由不可凝結氣體產生之邊界層,進一步提升熱傳,且此效益在冷凝面沒有重力滑落效應,也就是水平時,更為顯著。此研究顯示,若是能仔細考量及設計表面條紋的配置及其他操作條件,交錯濕潤性表面的冷凝熱傳性能將能進一步提升。

This study investigated the effect of surfaces with superhydrophobicity-based interlaced wettability on steam–air mixture condensation. Experiments were conducted on various types of surface with different modified strip widths under downward-facing horizontal and vertical surface orientations. The experimental results revealed that the condensation heat-transfer on surfaces with interlaced wettability could be highly influenced by the surface pattern, surface orientation, wall subcooling, and the existence of NCGs. Opposite trends of heat transfer were observed under different
surface orientation. The experimental data of horizontal surfaces showed that the heat transfer can be enhanced when the width of the modified surperhydrophobic strips
getting wider, while the narrower modified strips would increase the heat transfer more efficiently for vertical surfaces. In addition, a two-dimensional disturbance of the boundary layer imposed by NCGs is proposed, holding the potential to further heat transfer enhancement for steam-air condensation, especially in the situation without the sweeping of condensates under the gravity force. Such the facts imply that the potential of the interlaced surface could be further improved and applied if considering both the surface pattern and the operating conditions carefully.

Content

Chapter 1. Introduction......................................................................................1

1.1 Motivation..............................................................................................1

1.2 Literature Review on condensation heat transfer enhancement ............2

1.3 Purpose...................................................................................................5

Chapter 2. Theory .............................................................................................15

2.1 Surface Wettability and Surface Modification.....................................15

2.1.1 Wettability....................................................................................15

2.1.1.1 Young’s Equation..................................................................16

2.1.1.2 Wenzel Model .......................................................................16

2.1.1.3 Cassie-Baxter Model.............................................................17

2.1.1.4 Recent Progress on Wetting ..................................................17

2.1.2 Sol-gel Method.............................................................................22

2.2 Condensation Heat Transfer.................................................................24

2.2.1 Stages of Condensation................................................................24

2.2.1.1 Heterogeneous Nucleation....................................................24

2.2.1.2 Growth and Coalescence.......................................................25

2.2.1.3 Removal ................................................................................26

2.2.2 Heat Transfer Model ....................................................................28

2.2.2.1 Condensation on Hybrid Surface ..........................................28

2.2.2.2 Estimation of Heat Transfer Performance on the Interlaced

Surface .............................................................................................30

2.2.2.3 Effect of Non-condensable gas.............................................31

Chapter 3. Experiments....................................................................................35

3.1 Surface Modification ...........................................................................35

3.1.1 Chemicals and Material ...............................................................35

3.1.2 Equipment....................................................................................35

3.1.3 Procedures....................................................................................36

3.2 Thermal System ...................................................................................42

3.2.1 Equipment....................................................................................42

3.2.2 Setup and Procedures...................................................................42

3.3 Uncertainty Estimation ........................................................................51

Chapter 4. Results and Discussion...................................................................55

4.1 Effect of Surface Orientation on Homogeneous Condensing Surfaces...55

4.2 Heat Transfer Enhancement on Surfaces with Interlaced Wettability .58

4.2.1 Droplets morphology ...................................................................58

4.2.2 Effect of the surface pattern and surface orientation ...................62

4.2.3 Effect of Wall-subcooling ............................................................72

Chapter 5. Conclusions and Future Prospects ...............................................75

5.1 Conclusions..........................................................................................75

5.2 Future Prospects...................................................................................76

Bibliography ...........................................................................................................79

Bibliography

[1] H. G. Andrews, E. A. Eccles, W. C. E. Schofield, and J. P. S. Badyal, "Three-
dimensional hierarchical structures for fog harvesting," Langmuir, vol. 27, pp.

3798-3802, 2011.

[2] A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, "Water harvest via

dewing," Langmuir, vol. 28, pp. 10183-10191, 2012.

[3] A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, "Advances in seawater

desalination technologies," Desalination, vol. 221, pp. 47-69, 2008.

[4] T. Humplik, J. Lee, S. C. O''Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M.

A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, "Nanostructured

materials for water desalination," Nanotechnology, vol. 22, 292001, 2011.

[5] J. M. Beer, "High efficiency electric power generation: The environmental

role," Progress in Energy and Combustion Science, vol. 33, pp. 107-134,

2007.

[6] R. J. McGlen, R. Jachuck, and S. Lin, "Integrated thermal management

techniques for high power electronic devices," Applied Thermal Engineering,

vol. 24, pp. 1143-1156, 2004.

[7] T. B. Peters, M. McCarthy, J. Allison, F. A. Dominguez-Espinosa, D. Jenicek,

H. A. Kariya, W. L. Staats, J. G. Brisson, J. H. Lang, and E. N. Wang, "Design

of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High

Performance Electronics," IEEE Transactions on Components Packaging and

Manufacturing Technology, vol. 2, pp. 1637-1648, 2012.

[8] W. Nusselt, "The surface condensation of water vapour.," Zeitschrift Des

Vereines Deutscher Ingenieure, vol. 60, pp. 541-546, 1916.

[9] E. Schmidt, W. Schurig, and W. Sellschopp, "Condensation of water vapour in

film- and drop form," Zeitschrift Des Vereines Deutscher Ingenieure, vol. 74,

pp. 544-544, 1930.

[10] J. W. Rose, "Dropwise condensation theory and experiment: a review,"

Proceedings of the Institution of Mechanical Engineers Part a-Journal of

Power and Energy, vol. 216, pp. 115-128, 2002.

[11] D. W. Tanner, D. West, D. Pope, and C. J. Potter, "Promotion of dropwise

condensation by monolayers of radioactive fatty acids .I. stearic acid on

copper surfaces," Journal of Applied Chemistry, vol. 14, pp. 361-369, 1964.

[12] M. P. Bonnar, B. M. Burnside, J. Christie, E. J. Sceal, C. E. Troupe, and J. I. B.

Wilson, "Hydrophobic coatings from plasma polymerized

vinyltrimethylsilane," Chemical Vapor Deposition, vol. 5, pp. 117-125, 1999.

[13] D. W. Woodruff and J. W. Westwater, "Steam condensation on electroplated

gold - effect of plating thickness," International Journal of Heat and Mass

Transfer, vol. 22, pp. 629-632, 1979.

[14] G. A. Oneill and J. W. Westwater, "Dropwise condensation of steam on

electroplated silver surfaces," International Journal of Heat and Mass

Transfer, vol. 27, pp. 1539-1549, 1984.

[15] K. M. Holden, A. S. Wanniarachchi, P. J. Marto, D. H. Boone, and J. W. Rose,

"The use of organic coatings to promote dropwise condensation of steam,"

Journal of Heat Transfer-Transactions of the ASME, vol. 109, pp. 768-774,

1987.

[16] A. Taniguchi and Y. H. Mori, "Effectiveness of composite copper graphite

fluoride platings for promoting dropwise condensation of steam - a

Preliminary-Study," International Communications in Heat and Mass

Transfer, vol. 21, pp. 619-627, 1994.

[17] A. K. Das, H. P. Kilty, P. J. Marto, A. Kumar, and G. B. Andeen, "Dropwise

condensation of steam on horizontal corrugated tubes using an organic self-
assembled monolayer coating," Journal of Enhanced Heat Transfer, vol. 7, pp.

109-123, 2000.

[18] P. Roach, N. J. Shirtcliffe, and M. I. Newton, "Progess in superhydrophobic

surface development," Soft Matter, vol. 4, pp. 224-240, 2008.

[19] C. H. Chen, Q. J. Cai, C. L. Tsai, C. L. Chen, G. Y. Xiong, Y. Yu, and Z. F.

Ren, "Dropwise condensation on superhydrophobic surfaces with two-tier

roughness," Applied Physics Letters, vol. 90, 173108, 2007.

[20] Y. T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, "Effects of micro-
and nano-structures on the self-cleaning behaviour of lotus leaves,"

Nanotechnology, vol. 17, pp. 1359-1362, 2006.

[21] I. Orkan Ucar and H. Y. Erbil, "Droplet condensation on polymer surfaces: A

review," Turkish Journal of Chemistry, vol. 37, pp. 643-674, 2013.

[22] C. Dorrer and J. Ruhe, "Advancing and receding motion of droplets on

ultrahydrophobic post surfaces," Langmuir, vol. 22, pp. 7652-7657, 2006.

[23] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu,

L. Jiang, and D. B. Zhu, "Super-hydrophobic surfaces: From natural to

artificial," Advanced Materials, vol. 14, pp. 1857-1860, 2002.

[24] D. Oner and T. J. McCarthy, "Ultrahydrophobic surfaces. Effects of

topography length scales on wettability," Langmuir, vol. 16, pp. 7777-7782,

2000.

[25] J. Bravo, L. Zhai, Z. Z. Wu, R. E. Cohen, and M. F. Rubner, "Transparent

superhydrophobic films based on silica nanoparticles," Langmuir, vol. 23, pp.

7293-7298, 2007.

[26] A. V. Rao, S. S. Latthe, S. A. Mahadik, and C. Kappenstein, "Mechanically

stable and corrosion resistant superhydrophobic sol-gel coatings on copper

substrate," Applied Surface Science, vol. 257, pp. 5772-5776, 2011.

[27] S. Vemuri and K. J. Kim, "An experimental and theoretical study on the

concept of dropwise condensation," International Journal of Heat and Mass

Transfer, vol. 49, pp. 649-657, 2006.

[28] S. Vemuri, K. J. Kim, B. D. Wood, S. Govindaraju, and T. W. Bell, "Long term

testing for dropwise condensation using self-assembled monolayer coatings of

n-octadecyl mercaptan," Applied Thermal Engineering, vol. 26, pp. 421-429,

2006.

[29] A. T. Paxson, J. L. Yague, K. K. Gleason, and K. K. Varanasi, "Stable

dropwise condensation for enhancing heat transfer via the initiated chemical

vapor deposition (iCVD) of grafted polymer films," Advanced Materials, vol.

26, pp. 418-423, 2014.

[30] R. D. Narhe and D. A. Beysens, "Growth dynamics of water drops on a

square-pattern rough hydrophobic surface," Langmuir, vol. 23, pp. 6486-6489,

2007.

[31] C. Dorrer and J. Ruhe, "Condensation and wetting transitions on

microstructured ultrahydrophobic surfaces," Langmuir, vol. 23, pp. 3820-3824,

2007.

[32] C. Dorrer and J. Ruhe, "Some thoughts on superhydrophobic wetting," Soft

Matter, vol. 5, pp. 51-61, 2009.

[33] Y. T. Cheng and D. E. Rodak, "Is the lotus leaf superhydrophobic?," Applied

Physics Letters, vol. 86, 144101, 2005.

[34] C. P. Migliaccio, "Resonance-induced condensate shedding for high-efficiency

heat transfer," International Journal of Heat and Mass Transfer, vol. 79, pp.

720-726, 2014.

[35] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, "Vibration-induced

Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces,"

Applied Physics Letters, vol. 104, 181601, 2014.

[36] E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, "Resonance Cassie-
Wenzel wetting transition for horizontally vibrated drops deposited on a rough

surface," Langmuir, vol. 23, pp. 12217-12221, 2007.

[37] J. B. Boreyko and C. H. Chen, "Restoring Superhydrophobicity of Lotus

Leaves with Vibration-Induced Dewetting," Physical Review Letters, vol. 103,

174502, 2009.

[38] J. B. Boreyko and C. H. Chen, "Self-propelled dropwise condensate on

superhydrophobic surfaces," Physical Review Letters, vol. 103, 184501, 2009.

[39] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang,

"Jumping-droplet-enhanced condensation on scalable superhydrophobic

nanostructured surfaces," Nano Letters, vol. 13, pp. 179-187, 2013.

[40] J. T. Cheng, A. Vandadi, and C. L. Chen, "Condensation heat transfer on two-
tier superhydrophobic surfaces," Applied Physics Letters, vol. 101, 131909,

2012.

[41] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W.

Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, "How nanorough is rough

enough to make a surface superhydrophobic during water condensation?," Soft

Matter, vol. 8, pp. 8786-8794, 2012.

[42] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang,

"Condensation on superhydrophobic surfaces: the role of local energy barriers

and structure length scale," Langmuir, vol. 28, pp. 14424-14432, 2012.

[43] R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, "Immersion condensation

on oil-infused heterogeneous surfaces for enhanced heat transfer," Scientific

Reports, vol. 3, 1988, 2013.

[44] K. K. Varanasi, M. Hsu, N. Bhate, W. S. Yang, and T. Deng, "Spatial control in

the heterogeneous nucleation of water," Applied Physics Letters, vol. 95,

094101, 2009.

[45] C. W. Lo, C. C. Wang, and M. C. Lu, "Spatial control of heterogeneous

nucleation on the superhydrophobic nanowire array," Advanced Functional

Materials, vol. 24, pp. 1211-1217, 2014.

[46] A. R. Parker and C. R. Lawrence, "Water capture by a desert beetle," Nature,

vol. 414, pp. 33-34, 2001.

[47] S. S. Beaini and V. P. Carey, "Strategies for developing surfaces to enhance

dropwise condensation: exploring contact angles, droplet sizes, and patterning

surfaces," Journal of Enhanced Heat Transfer, vol. 20, pp. 33-42, 2013.

[48] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, "Enhancement of

condensation heat transfer with patterned surfaces," International Journal of

Heat and Mass Transfer, vol. 71, pp. 675-681, 2014.

[49] A. M. Macner, S. Daniel, and P. H. Steen, "Condensation on surface energy

gradient shifts drop size distribution toward small drops," Langmuir, vol. 30,

pp. 1788-1798, 2014.

[50] C. C. Hsu, T. W. Su, and P. H. Chen, "Pool boiling of nanoparticle-modified

surface with interlaced wettability," Nanoscale Research Letters, vol. 7, 259,

2012.

[51] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, "Analysis of

condensation heat transfer enhancement with dropwise-filmwise hybrid

surface: Droplet sizes effect," International Journal of Heat and Mass

Transfer, vol. 77, pp. 785-794, 2014.

[52] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, "Experimental

investigation on steam condensation heat transfer enhancement with vertically

patterned hydrophobic-hydrophilic hybrid surfaces," International Journal of

Heat and Mass Transfer, vol. 83, pp. 27-38, 2015.

[53] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis,

"Enhancing dropwise condensation through bioinspired wettability

patterning," Langmuir, vol. 30, pp. 13103-13115, 2014.

[54] G. Koch, D. C. Zhang, and A. Leipertz, "Condensation of steam on the surface

of hard coated copper discs," Heat and Mass Transfer, vol. 32, pp. 149-156,

1997.

[55] R. W. Bonner, "Dropwise condensation on surfaces with graded

hydrophobicity," Ht2009: Proceedings of the ASME Summer Heat Transfer,

Vol 3, pp. 491-495, 2009.

[56] J. B. Boreyko, Y. J. Zhao, and C. H. Chen, "Planar jumping-drop thermal

diodes," Applied Physics Letters, vol. 99, 234105, 2011.

[57] J. B. Boreyko and C. H. Chen, "Vapor chambers with jumping-drop liquid

return from superhydrophobic condensers," International Journal of Heat and

Mass Transfer, vol. 61, pp. 409-418, 2013.

[58] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial

and Engineering Chemistry, vol. 28, pp. 988-994, 1936.

[59] A. Lafuma and D. Quere, "Superhydrophobic states," Nature Materials, vol. 2,

pp. 457-460, 2003.

[60] A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces.," Transactions

of the Faraday Society, vol. 40, pp. 0546-0550, 1944.

[61] J. Bico, U. Thiele, and D. Quere, "Wetting of textured surfaces," Colloids and

Surfaces a-Physicochemical and Engineering Aspects, vol. 206, pp. 41-46,

2002.

[62] L. C. Gao and T. J. McCarthy, "How Wenzel and Cassie were wrong,"

Langmuir, vol. 23, pp. 3762-3765, 2007.

[63] D. Quere, "Wetting and roughness," Annual Review of Materials Research,

vol. 38, pp. 71-99, 2008.

[64] N. Miljkovic, R. Enright, and E. N. Wang, "Effect of droplet morphology on

growth dynamics and heat transfer during condensation on superhydrophobic

nanostructured surfaces," ACS Nano, vol. 6, pp. 1776-1785, 2012.

[65] J. L. Viovy, D. Beysens, and C. M. Knobler, "Scaling description for the

growth of condensation patterns on surfaces," Physical Review A, vol. 37, pp.

4965-4970, 1988.

[66] D. Beysens, "The formation of dew," Atmospheric Research, vol. 39, pp. 215-

237, 1995.

[67] R. D. Narhe and D. A. Beysens, "Nucleation and growth on a

superhydrophobic grooved surface," Physical Review Letters, vol. 93, 076103,

2004.

[68] R. D. Narhe and D. A. Beysens, "Water condensation on a super-hydrophobic

spike surface," Europhysics Letters, vol. 75, pp. 98-104, 2006.

[69] D. Beysens and C. M. Knobler, "Growth of breath figures," Physical Review

Letters, vol. 57, pp. 1433-1436, 1986.

[70] D. Fritter, C. M. Knobler, and D. A. Beysens, "Experiments and simulation of

the growth of droplets on a surface (Breath Figures)," Physical Review A, vol.

43, pp. 2858-2869, 1991.

[71] C. W. Lo, C. C. Wang, and M. C. Lu, "Scale effect on dropwise condensation

on superhydrophobic surfaces," ACS Applied Materials & Interfaces, vol. 6,

pp. 14353-14359, 2014.

[72] Minkowyc.W. J. and E. M. Sparrow, "Condensation heat transfer in presence

of noncondensables interfacial resistance superheating variable properties and

diffusion," International Journal of Heat and Mass Transfer, vol. 9, pp. 1125-

1144, 1966.

[73] E. M. Sparrow, Minkowyc.W. J., and M. Saddy, "Forced convection

condensation in presence of noncondensables and interfacial resistance,"

International Journal of Heat and Mass Transfer, vol. 10, pp. 1829-1845,

1967.

[74] S. K. Park, M. H. Kim, and K. J. Yoo, "Effects of a wavy interface on steam-
air condensation on a vertical surface," International Journal of Multiphase

Flow, vol. 23, pp. 1031-1042, 1997.

[75] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, and Y. Zhang, "Condensation heat

transfer enhancement in the presence of non-condensable gas using the

interfacial effect of dropwise condensation," International Journal of Heat and

Mass Transfer, vol. 51, pp. 1728-1737, 2008.

[76] I. K. Huhtiniemi and M. L. Corradini, "Condensation in the presence of

noncondensable gases," Nuclear Engineering and Design, vol. 141, pp. 429-

446, 1993.

[77] J. R. Taylor, An introduction to error analysis: the study of uncertainties in

physical measurements , 2nd ed. Sausalito, California: University Science

Books, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top