跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭柏勳
研究生(外文):Bo-Xun Peng
論文名稱:應用數位影像相關法於機械系統與土木結構之變形及動態特性量測
論文名稱(外文):Application of the Digital Image Correlation Technique to Deformation Problems and Dynamic Characteristics of Mechanical System and Civil Structure
指導教授:馬劍清
指導教授(外文):Chien-Ching Ma
口試委員:尹慶中楊元森劉光晏張敬源
口試委員(外文):Ching-Chung YinYuan-Sen YangKuang-Yen LiuChing-Yuan Chang
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:277
中文關鍵詞:數位影像相關法影像處理高精密量測跨尺度跨領域位移應變
外文關鍵詞:Digital image correlationImage processinghigh-resolution measurementmulti-scaleinterdisciplinaryoverall displacementstrain
相關次數:
  • 被引用被引用:16
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文使用實驗室團隊自行研發以及撰寫程式之數位影像相關法(Digital Image Correlation, DIC)量測技術,進行跨尺度以及跨領域之實驗量測,實驗針對傳統感測器難以精密定量量測的問題作深入的探討,以驗證實驗室所開發之數位影像相關法技術的精確度與其優越性。數位影像相關法是一種影像處理技術,具有非接觸且全域式的量測技術,其優勢為進行實驗量測時儀器架設十分簡便,僅需使用一般攝影機擷取影像,並透過實驗室自行開發之數位影像相關法核心分析技術進行影像處理,藉由追蹤待測物表面特徵值來獲得試體位移場與變形場的資訊,其量測結果擁有高精確度的準確性,利用核心演算法可獲得待測物體的全域位移場u1、u2及速度場v1、v2及加速a1、a2以及應變場e11、e22與e12,可完整呈現實驗待測物的變形特性。相較於市售的數位影像相關技術套裝模組,本論文所使用的數位影像相關量測技術擁有較高的應用與提升空間,可進行跨尺度與跨領域的量測及應用。
本論文使用數位影像相關法,進行跨尺度、跨領域之精密量測,實驗包含精密對位平台及高速主軸作動時之軌跡追蹤、懸臂樑之共振模態、全場位移、速度、加速度及撓角的量測、鋼筋與混凝土材料試驗及大型土木結構試驗之量測,由於數位影像相關法高精度的量測結果,使得此技術可量測位移場,更可呈現正確的應變場,本研究將針對不同特性的實驗搭配適合的影像擷取設備,提高實驗量測結果之空間與時間解析度,以進行高精密量測應用,並與雷射位移計、FS、有限元素模擬軟體、理論解析解、NDI certus HD光學感測儀、拉線式位移計以及加速規輸出量測結果相互比較,以驗證數位影像相關法量測技術之準確性與可靠性。


This thesis uses Digital Image Correlation (DIC) technique developed in our laboratory to experimental measurement of deformation of solids and structures for multi-scale and interdisciplinary problems. Digital Image Correlation is a non-contact and full-field measurement technique. The advantage of Digital Image Correlation is the simplicity and convenience of experiment setup. Recording the images of the deformation object, Digital Image Correlation has ability to measure displacement, velocity, acceleration and strain fields through our self-developed image processing technique. Using high-speed camera for dynamic problem like wave propagation of cantilever beam, however the issue of material testing problem in civil engineering can be measured by using high-resolution camera. The measurement of deformation for large structures in civil engineering is an important application and is also presented in the thesis. The trajectory analysis of precision table and high-speed spindle, vibration of cantilever beam, tensile test of reinforced and compression test of concrete related to mechanical and civil engineering are investigated. The results obtained from the Digital Image Correlation are also compared with that obtained by other experimental techniques to verify its reliability and accuracy.

誌謝 I
摘要 V
Abstract VII
目錄 IX
表目錄 XIII
圖目錄 XV
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 內容簡介 7
第二章 數位影像相關法基本原理與實驗儀器介紹 11
2.1 數位影像相關法基本運作原理 11
2.2 數值向量化運算及平行運算 14
2.3 數位影像相關法之影像追蹤原理與實驗操作流程 17
2.4 數位影像相關法數據分析之重要參數 20
2.4.1 時間參數 20
2.4.2 空間參數 20
2.4.3 半窗格 21
2.5 實驗儀器介紹 22
2.5.1 加速規 22
2.5.2 光纖位移計 23
2.5.3 聚偏二氟乙烯(PVDF)薄膜感測系統 23
2.5.4 搭配PVDF感測器使用的電荷放大器原理介紹 25
2.5.5 NDI Certus HD光學感測器 27
2.5.6 MATS(Multi-Axial Testing System)多軸向試驗系統 28
2.5.7 LVDT位移感測器 28
2.5.8 雷射位移計 28
第三章 應用DIC於精密平台與高速主軸之運轉特性量測 49
3.1 精密平台之基本運作原理 49
3.2 精密對位平台之位移追蹤 50
3.2.1 精密對位平台做直線往復運動之量測結果 50
3.2.2 精密對位平台作旋轉往復運動之量測結果 52
3.3 精密對位平台量測結果之檢驗 53
3.3.1 精密對位平台做平行四邊形作動之量測結果 53
3.3.2 數位影像相關法與雷射位移計之量測結果比較 54
3.4 精密對位平台負重情況下之軌跡追蹤 55
3.5 高速主軸運轉時之精密量測 56
3.5.1 高速主軸之位移軌跡追蹤 57
3.5.2 高速主軸在不同轉速下之位移與加速度量測 58
3.6 討論 59
第四章 應用DIC於懸臂樑之動態量測 99
4.1 懸臂樑之穩態振動量測 99
4.1.1 懸臂樑之穩態響應理論解析 100
4.1.2 共振模態量測-帶通濾波法 101
4.2 懸臂樑之加速度量測 103
4.3 懸臂樑之暫態量測結果 103
4.3.1 懸臂樑之暫態響應理論解析 104
4.3.2 懸臂樑之暫態響應實驗、理論與有限元素軟體之比較 109
4.4 討論 114
第五章 應用DIC於鋼筋與混凝土材料試驗與土木結構變形之精密量測 153
5.1 應用DIC於鋼筋與混凝土之材料試驗 153
5.1.1 拉伸試驗介紹 153
5.1.2 鋼筋之材料特性量測 156
5.1.3 混凝土之材料抗壓特性量測 160
5.2 應用DIC於高強度鋼筋混凝土方形柱之軸向壓縮試驗之量測 163
5.2.1 方柱試體設計 164
5.2.2 實驗結果 165
5.3 應用DIC於橋墩振動台試驗之量測 166
5.3.1 0.16g橋墩振動台試驗之精密量測 167
5.3.2 0.8g橋墩振動台試驗之精密量測 168
5.4 討論 169
第六章 結論與未來展望 259
6.1 結論 259
6.2 未來展望 262
參考文獻 265
附錄 271
A. PVDF薄膜規格 271
B. KISTLER Type5064B11電荷放大器與Type2852A11適調平台規格 273
C. Euler-Bernoulli Beam暫態解之係數 275
D. Timoshenko Beam暫態解之係數 276


[1]C. C. Ma and C. C. Chang, “Application of Image Processing and Computer Cluster in the Development of Full-Field Measurement for Electronic Speckle Pattern Interferometry and Digital Image Correlation,” Doctoral Dissertation, Department of mechanical engineering, National Taiwan University, 2012.
[2]J. Xavier, A. M. R. Sousa, J. J. L. Morais, V. M. J. Filipe, and M. Vaz, “Measuring Displacement Fields by Cross-Correlation and a Differential Technique: Experimental Validation,” Optical Engineering, vol. 51, no. 4, pp. 043602–1–043602–12, 2012.
[3]Z. X. Chen, J. Liang, C. Guo, and H. Hu, “Application of the Speckle Technique for Three-Dimensional Deformation Measurement,” Optical Engineering, vol. 51, no. 1, pp. 013604–1–013604–7, 2012.
[4]M. M. Frocht, Photoelasticity, vol. 1. J. Wiley, 1941.
[5]A. J. Durelli and V. J. Parks, Moiré Analysis of Strain. Prentice-Hall Englewood Cliffs, New Jersey, 1970.
[6]T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH, 2005.
[7]M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Verlag, 2009.
[8]C. C. Ma and K. M. Hung, “Exact Full-Field Analysis of Strain and Displacement for Circular Disks Subjected to Partially Distributed Compressions,” International Journal of Mechanical Sciences, vol. 50, no. 2, pp. 275–292, 2008.
[9]J. N. Butters and J. A. Leendertz, “Speckle Pattern and Holographic Techniques in Engineering Metrology,” Optics and Laser Technology, vol. 3, no. 1, pp. 26–30, 1971.
[10]O. Lkberg and K. Hgmoen, “Use of Modulated Reference Wave in Electronic Speckle Pattern Interferometry,” Journal of Physics E: Scientific Instruments, vol. 9, no. 10, pp. 847–851, 1976.
[11]Y. H. Huang and C. C. Ma, “Experimental Measurements and Finite Element Analysis of the Coupled Vibrational Characteristics of Piezoelectric Shells,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, no. 4, pp. 785–798, 2012.
[12]G. Wang, Y. J. Li, and H. C. Zhou, “Application of the Radial Basis Function Interpolation to Phase Extraction from a Single Electronic Speckle Pattern Interferometric Fringe”, Applied Optics, vol. 50, no. 19, pp. 3110-3117, 2011.
[13]C. Y. Chang, S. H. Lin, and C. C. Ma, “High-Resolution Electronic Interferometry for the Measurement of In-Plane Vibration,” Applied Optics, vol. 51, no. 24, pp. 5773–5779, 2012.
[14]T. Siebert, H. R. Schubach, and K. Splitthof, “Recent Developments and Applications for Optical Full Field Strain Measurement Using ESPI and DIC,” Proceedings of SPIE, vol. 7997, pp. 79972B, 2010.
[15]D. Zhang, X. Zhang, and G. Cheng, “Compression Strain Measurement by Digital Speckle Correction”, Exp. Mech. 39 62-5, 1999.
[16]B. K. Bay, “Texture Correlation—a Method for the Measurement of Detailed Strain Distributions within Trabecular Bone”, J. Orthop. Res 13 258–67, 1995.
[17]D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital Speckle-Displacement Measurement Using a Complex Spectrum Method”, Appl. Opt. 32 1839–49, 1993.
[18]G. R. Gaudette, J. Todaro, I. B. Krukenkamp, and F. P. Chiang, “Computer Aided Speckle Interferometry: a Technique for Measuring Deformation of the Surface of the Heart” Ann. Biomed. Eng. 29 775–80, 2001.
[19]M. Sjodahl, and L. R. Benckert, “Electronic Speckle Photography: Analysis of an Algorithm Giving the Displacement with Subpixel Accuracy”, Appl. Opt.32 2278–84, 1993.
[20]M. Sjodahl, “Accuracy in Electronic Speckle Photography”, Appl. Opt. 36 2875–85, 1997.
[21]R. J. Adrian, “Twenty Years of Particle Image Velocimetry,” Experiments in Fluids, vol. 39 159–69, 2005.
[22]D. J. White, W. A. Take, and M. D. Bolton “Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry,” Geotechnique, vol. 53 619–31, 2003.
[23]B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate Measurement of Satellite Antenna Surface Using Three-Dimensional Digital Image Correlation Technique,” Strain, vol. 45 194–200, 2009.
[24]B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography,” Experimental Mechanics, vol. 39, no. 3, pp. 217–226, 1999.
[25]Z. Sun, J. S. Lyons, and S. R. McNeill, “Measuring Microscopic Deformations with Digital Image Correlation,” Optics And Lasers in Engineering, vol. 27, no. 4, pp. 409–428, 1997.
[26]M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreier, X. Li, and A. P. Reynolds, “Scanning Electron Microscopy for Quantitative Small and Llarge Deformation Measurements Part II: Experimental Validation for Magnifications from 200 to 10,000,” Experimental Mechanics, vol. 47, no. 6, pp. 789–804, 2007.
[27]C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-Dimensional Full-Field Measurements of Large Deformations in Soft Materials Using Confocal Microscopy and Digital Volume Correlation,” Experimental Mechanics, vol. 47, no. 3, pp. 427–438, 2007.
[28]X. Li, W. Xu, M. A. Sutton, and M. Mello, “Nanoscale Deformation and Cracking Studies of Advanced Metal Evaporated Magnetic Tapes Using Atomic Force Microscopy and Digital Image Correlation Techniques,” Materials science and technology, vol. 22, no. 7, pp. 835–844, 2006.
[29]H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Experimental Mechanics, vol. 29, no. 3, pp. 261–267, 1989.
[30]S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21–36, 2003.
[31]張景媖,馬劍清,「數位影像相關法應用於跨尺度跨領域靜態及動態全域位移與應變精密量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2013。
[32]周宛萱,馬劍清,「建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2014。
[33]簡宸煜,馬劍清,「應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2015。
[34]王又德,廖文正,「高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究」, 碩士論文, 機械工程學研究所, 台灣大學, 2015。
[35]張鈞凱,馬劍清,「位移與應變暫態波傳之實驗量測、理論分析以及數值計算」, 碩士論文, 土木工程學系, 台灣大學, 2011。
[36]Y. C. Su, and C. C. Ma, “Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods,” International Journal of Solids and Structures, 2012.
[37]劉光晏,趙文成,李煜勳,楊世豪,陳正明,「高強度鋼筋混凝土方形柱之軸向壓縮行為研究」, 混凝土科技, 第10卷, 第3期, 2016。
[38]陳亮至,馬劍清,「建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測」, 碩士論文, 機械工程學研究所, 台灣大學, 2016。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測
2. 建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測
3. 應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測
4. 建立即時立體數位影像相關法於三維工程問題的動態量測
5. 布拉格光纖光柵感測器於高速內藏式主軸及超精密平面磨床動態特性、溫升及變形之精密量測
6. 導音管風切音及音膜特性的理論分析與實驗量測
7. 數位影像相關法應用於跨尺度跨領域靜態及動態全域位移與應變精密量測
8. 矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測
9. 數位影像相關法於二維軌跡及變形量測和應用於建構立體形貌
10. 開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測
11. 數位影像相關法於高速主軸即時監測與機械系統動態行為及車輛追跡之跨領域量測
12. 布拉格光纖光柵應用於壓力感測器設計與製作以及動態應變量測
13. 以布拉格光纖光柵感測器量測與分析固液耦合結構物的動態特性及暫態波傳問題
14. 優化數位影像相關法並應用於跨尺度問題的精密量測與系統整合
15. 聚偏二氟乙烯薄膜與布拉格光纖光柵感測器之動態量測技術研發與應用