跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建國
研究生(外文):Chien-Kuo Chen
論文名稱:複合輪胎力估測器於多動力馬達電動車驅動力矩分配策略之整合應用
論文名稱(外文):Application of a Composite Estimator of Tire Force to the Driving Torque Strategy for an Electric Vehicle Driven by Multiple Motors
指導教授:陽毅平陽毅平引用關係
指導教授(外文):Yee-Pien Yang
口試委員:李綱陳柏全李承和
口試委員(外文):Kang LiBo-Chen ChenCheng-Ho Lee
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:228
中文關鍵詞:輪胎力估測器複合估測法粒子群最佳化法節能行車策略車身穩定系統力矩分配電動車
外文關鍵詞:tire-force estimatorcomposite estimatorparticle swarm optimizationenergy conservationvehicle stability controltorque distributionelectric vehicle
相關次數:
  • 被引用被引用:3
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出一新型輪胎縱向力複合估測法,整合單輪分析及整車分析兩種不同的估測方法,並以本實驗室之多動力馬達電動車作為架構,實車採用15-kW直流無刷馬達搭配傳動齒輪箱,作為前輪之間接驅動動力源;後輪則由兩顆7-kW永磁同步馬達置於輪內,作為後輪之直接驅動動力源。此多馬達之動力架構能藉由操作各馬達的輸出力矩於高效率區間,達到提升整體行車效率與續航力之效果。而本研究係以本實驗室之電動車所配置的感測器,設計一套估測輪胎力(F_x,F_y,F_z)的估測器,進而使節能策略及安全策略能實行在實車上,而不單單只有在電腦模擬上完成,此估測器在行車過程中將提供估測值給整合車身穩定控制做判定依據,並根據駕駛者的油門及煞車命令,即時分配各馬達之驅動力矩及回充煞車力矩,以將各馬達持續操作於高效率區域,使行車時能在滿足駕駛者的加速性需求下,將行車效率最佳化,並且避免輪胎打滑與轉向失控的問題。
本研究以模型迴路(model-in-the-loop, MIL)驗證輪胎力估測器及力矩分配策略之性能,將車輛模型建置於CarSim之中,並設計輪胎力估測器以提供數據給控制策略進行運算,實驗結果顯示,其確實能在不失駕駛者對車輛動態之需求與行車安全為前提下,在加速、煞車、直行以及轉向操作時,即時的分配馬達力矩以達到節能行車之效果,而複合輪胎縱向力估測器之估測值明顯優於以單輪受力圖為基礎設計之估測器,而誤差改善的幅度達到60%~97%,尤其在前輪(左、右)皆有著更加顯著的差異,並在導入數值給車身穩定系統時,能達到更符合預期的行車結果。


This research proposes a new approach of estimator of tire force for electric vehicle (EV), which combines two different ways of estimating tire longitudinal force. The two methods are based on different analytical methods. The normal tire longitudinal force estimation analyzes single wheel model, but composite estimation analyzes not only tire model but also vehicle model. This composite estimator system is based on the powertrain of EV consists of three motors: a 15-kW front traction motor with gearbox and two 7-kW in-wheel motors installed inside both rear wheels. This configuration not only provides the vehicle good performance for planar motion control, but also improves driving efficiency of vehicle by driving and regenerative braking torque distribution of three motors. This research is found upon the sensors which configured in the EV of this laboratory to design an estimator system which can provide parameters to the distribution strategy of energy conservation and security. This estimator provides data to distribution strategy and allow it to calculate each torque of motors according to driver’s order. The strategy will adjust torque command of motors by particle swarm optimization (PSO) that makes motor operate in high efficiency region The torque distribution algorithm can improve driving efficiency by minimizing each instantaneous cost power and maximizing each instantaneous recovery power. In addition, in order to enhance the safety of vehicle driving, this research further develops the strategy by integrating electronic stability program (ESP), which is composed by slip ratio controller (SRC) and direct yaw-moment controller (DYC).
Finally, this research verifies the accuracy of estimator and distribution strategy by model-in-the-loop (MIL) simulation. The vehicle model is designed from the software CarSim. Experimental results show that the composite estimator can calculate the values more accurately than traditional estimator, which can make ESP work more effiecntly than before. According to this data, the torque distribution strategy can ensure the driving safety by ESP and save energy when EV is either driving or braking on straight or curve roads.


口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xvi
符號表 xviii
1 第一章、緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 本文貢獻 7
1.4 論文章節摘要 8
2 第二章、多動力馬達電動車之系統分析 10
2.1 多動力馬達電動車架構 10
2.2 馬達及馬達驅動器 11
2.3 傳動齒輪箱 18
2.4 輪胎模型 19
2.5 車體動態模型 23
2.6 電池模型 29
3 第三章、車身穩定系統之設計 33
3.1 滑模控制(Sliding Mode Control, SMC) 33
3.2 滑差控制器(Slip Ratio Controller, SRC) 35
3.3 直接偏擺力矩控制器(Direct Yaw-Moment Controller, DYC) 40
3.4 控制器設計總結 46
4 第四章、即時節能動力分配策略與車身穩定系統之整合設計 50
4.1 粒子群最佳化法 50
4.2 節能策略與車身穩定系統整合架構 55
4.3 即時節能驅動及回充煞車力矩分配策略流程 57
4.4 驅動力矩分配策略流程 59
4.5 回充煞車力矩分配策略流程 75
4.6 PSO參數設定 109
5 第五章、輪胎力估測器之設計 112
5.1 估測器系統架構 112
5.2 輪胎縱向力估測器 114
5.3 輪胎正向力估測器 116
5.4 輪胎側向力估測器 117
5.5 複合估測器之整合 120
6 第六章 MIL行車模擬驗證 125
6.1 MIL模擬架構介紹 125
6.2 MIL估測器模擬驗證 134
6.3 MIL車身穩定系統模擬驗證 167
6.4 MIL行車模擬節能性驗證 197
6.5 MIL行車車身穩定性及節能性之結果討論 216
7 第七章、結論與未來展望 220
7.1 結果討論 220
7.2 未來展望 221
參考文獻 223



[1]Y. Hori, “Future vehicle driven by electricity and control-research on four-wheel-motored "UOT Electric March II",” IEEE Transactions on Industrial Electronics, Vol. 51, 2004, pp. 954-962.
[2]“Chevrolet Spark EV,“ Chevrolet, [Online].
Available: http://www.chevrolet.com/spark-ev-electric-vehicle.html
[3]“Nissan Leaf,” Nissan [Online]. Available:http://www.nissanglobal.com/EN/NISSAN/LEAF
[4]“Fiat 500e,” Fiat [Online].
Available: http://www.fiatusa.com/en/500e/
[5] “Mercedes Benz B-Class Electric Drive,” Mercedes Benz, [Online].
Available: http://www.mbusa.com/mercedes/vehicles/class/class-B/bodystyle-EDV
[6]“Volkswagen e-Golf,” Volkswagen, [Online].
Available: http://www.volkswagen.co.uk/new/e-golf-vii/home
[7]“Ford Focus BEV,” Ford [Online].
Available: http://www.ford.com/cars/focus/trim/electric/
[8]“BMW i3,” BMW [Online].
Available:www.bmw.com.tw/com/tw/newvehicles/i/i3/2014/showroom/design.html
[9]“Kia Soul EV,” Kia [Online].
Available: http://www.kia.com/us/en/vehicle/soul-ev/2016
[10]“Smart Fortwo EV,” Smart [Online].
Available: http://www.smartusa.com/models/electric-coupe
[11]“Tesla Model X P90D,” Tesla [Online]
Available: https://www.teslamotors.com/zh_TW/modelx?redirect=no
[12]“Porsche Mission E,” Porsche [Online]
Available: http://www.porsche.com/microsite/mission-e/international.aspx#
[13]“Audi e-tron quattro,” Audi [Online]
Available:http://www.audi.com.tw/tw/brand/zh/Newscenter/NewsReview/News2015_07_12/News2015_09_16.print.html
[14]Tesla Official Website. (2015, Jan. 25). Tesla Model S [Online]. Availabel: http://www.teslamotors.com/models
[15]慶應義塾大學電氣電動車實驗室. (2012, Sep. 23). Eliica性能表[Online]. Available:http://www.eliica.com/project/eliica/spec.html
[16]Mitsubishi Official Website. (2012, Sep. 23). Mitsubishi Colt EV[Online]. Available:http://www.mitsubishi-motors.com/corporate/about_us/technology/environment/e/miev.html
[17]梁誌明, 輪內馬達懸吊系統之分析與設計, 碩士論文, 國立台灣大學, 台北, 2010.
[18]B. Breuer, M. Bartz, K. Bill, S. Gruber, M. Semsch, T. Strothjohann and C. Xie, ‘‘The Mechatronic Vehicle Corner of Darmstadt University of Technology-Interaction and Cooperation of a Sensor Tire, New Low-Energy Disc Brake and Smart Wheel Suspension,’’ Proceedings of FISITA 2000, Seoul, Korea, June 12–15, 2000.
[19]E. Bakker, H. B. Pacejka and L. Lidner, ‘‘A New Tire Model With an Application in Vehicle Dynamics Studies,’’ SAE Transactions, Journal of Passenger Cars, April, 1989.
[20]D.-J. LEE and Y.-S. PARK, “Sliding-mode-based parameter identification with application to tire pressure and tire-road friction,” International Journal of Automotive Technology, Vol. 12, No. 4, pp. 571−577 ,2011
[21]Kanwar B. Singh, Mustafa Ali Arat and Saied Taheri, ”An Intelligent Tire Based Tire-Road Friction Estimation Technique and Adaptive Wheel Slip Controller for Antilock Brake System” Transaction of the ASME, Vol. 135, May, 2013
[22]L. R. Ray, A. Ramasubramanian, and J. Townsend, “Adaptive friction compensation using extended Kalman-Bucy filter friction estimation,” Control Engineering Practice, vol. 9, no. 2, pp. 169-179, Feb, 2001.
[23]Y. Hori, Y. Toyoda and Y. Tsuruoka, “Traction Control of Electric Vehicle: Basic Experimental Results Using the Test EV, ” IEEE Transactions on Industrial Application, vol. 34, no. 5, pp. 1131-1138, Oct, 1998.
[24]V. D. Colli, G. Tomassi and M. Scarano, ““Single Wheel” Longitudinal Traction Control for Electric Vehicles,” IEEE Transactions on power electronics, vol. 21, no. 3, 2006, pp. 799-808, May, 2006.
[25]A. Rezaeian, R. Zarringhalam, S. Fallah, W. Melek, A. Khajepour, S.-Ken Chen, N. Moshchuck, B. Litkouhi,” Novel Tire Force Estimation Strategy for Real-Time Implementation on Vehicle Applications,” IEEE Transactions on vehicular technology, Vol. 64, 2015, pp. 2231-2241.
[26]W. Cho, J. Yoon, S. Yim, B. Koo, and K. Yi,” Estimation of Tire Forces for Application to Vehicle Stability Control,” IEEE Transactions on vehicular technology, vol. 59, no. 2, pp. 638-649, Feb, 2010.
[27]S. Chakraborty, S. Sen, A. Sutradhar and A. Sengupta,” Estimation of Tire-Road Friction Coefficient and Frictional Force for Active Vehicle Safety System,” 2015 Industrial Instrumentation and Control (ICIC), College of Engineering Pune, India, May, 2015, pp 674-679.
[28]H. Hamman, “Tire force estimaton for a passenger vehicle with the Unscented Kalman Filter,” 2014 IEEE Intelligent Vehicle Symposium (IV), Dearborn, Michigan, USA, June, 2014, pp. 814-819.
[29]X. W. Zhang, Y. X. Ming, M. Peng, and F. H. Ren,”A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations,” Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 52:4, pp. 475-503.
[30]L. R. Ray, “Nonlinear tire force estimation and road friction identification: Simulation and experiments,” Automatica, vol. 33, no. 10, pp. 1819-1833, Oct, 1997.
[31]J. He, D.A.Crolla, M.C.Levesley and W.J.Manning, “Coordination of active steering, driveline, and braking for integrated vehicle dynamics control,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 220, no. 10, pp. 1401-1421 October , 2006.
[32]G. Baffet, A. Charara, D. Lechner, and D. Thomas, “Experimental evaluation of observers for tire-road forces, sideslip angle and wheel cornering stiffness”, Vehicle System Dynamics, 46: 6, pp. 501 -520, 2008.
[33]N. Mohan, T. Undeland, W. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., John Wiley & Sons, Inc., 2003.
[34]M. F. Rahman, L. Zhong, “Comparison of torque responses of the interior permanent magnet motor under PWM current and direct torque controls,” Annual Conference on IEEE Industrial Electronics Society, San Jose, CA, Vol. 3, 1999, pp. 1464-1470.
[35]Y. Hori, Y. Toyoda, Y. Tsuruoka, “Traction control of electric vehicle based on the estimation of road surface condition-basic experimental results using the test EV ‘UOT Electric March’,” Power Conversion Conference, Nagaoka, Vol. 1, 1997, pp. 1-8.
[36]S. I. Sakai, Y. Hori, “Advanced vehicle motion control of electric vehicle based on the fast motor torque response,” Proceedings of the International Symposium on Advanced Vehicle Control, 2000, pp. 729-736.
[37]L. Guzzella, A. Amstutz, “CAE tools for quasi-static modeling and optimization of hybrid powertrains,” IEEE Transactions on Vehicular Technology, Vol. 48, 1999, pp. 1762-1769.
[38]L. Guzzella, A. Sciarretta, Vehicle Propulsion Systems, Springer, USA, 2007.
[39]Rajesh Rajamani, Vehicle Dynamics and Control, Springer, USA, 2012.
[40]Mitsubishi Official Website. (2015, Jan. 25). Mitsubishi Colt Plus. [Online]. Available:http://coltplus.mitsubishi-motors.com.tw/
[41]D. Ambuhl, L. Guzzella, “Predictive reference signal generator for hybrid electric vehicles.” IEEE Transactions on Vehicular Technology, Vol. 58, 2009, pp. 4730-4740.
[42]N. Kim, S. Cha, H. Peng, “Optimal control of hybrid electric vehicles based on pontryagin''s minimum principle.” IEEE Transactions on Control Systems Technology, Vol. 19, 2011, pp. 1279-1287.
[43]施昌沅, 雙車輪馬達電動車之車身穩定控制系統, 碩士論文, 國立台灣大學, 台北, 2012.
[44]T. Chung, K. Yi, “Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track,’’ IEEE Transations on Control System Technology, Vol. 14, 2006, pp. 224-234.
[45]G. Zou, Y. Luo, X. Lian, K. Li, “A research of DYC for independent 4WD EV based on control target dynamic regulated,’’ IEEE International Conference on Vehicular Electronics and Safety, Beijing, China, 2007, pp.1-7.
[46]L. Chu, L. Chao, Y. Zhang, Y. Shi, “Design of longitudinal vehicle velocity observer using fuzzy logic and kalman filter.” 2011 International Conference on Electronic and Mechanical Engineering and Information Technology, Harbin, Hilongjiang, China, 2011, pp. 3225-3228.
[47]L. H. Zhao, Z. Y. Liu, H. Chen, “Design of a nonlinear observer for vehicle velocity estimation and experiments.” IEEE Transactions on Control Systems Technology, Vol. 19, pp. 664-672.
[48]徐殷偉, 基於速度及摩擦狀態估測之四輪驅動電動車循跡控制, 碩士論文, 國立台灣大學, 台北, 2010.
[49]Z. Wu, M. Yao, H. Ma, W. Jia, F. Tian, “Low-cost antenna attitude estimation by fusing inertial sensing and two-antenna GPS for vehicle-mounted satcom-on-the-move.” IEEE Transactions on Vehicular Technology, Vol. 62, 2013, pp. 1084-1096.
[50]葉智榮, 先進轉向系統發展趨式介紹, 車輛研測資訊, 財團法人車輛研究測試中心, 彰化, 2010.
[51]C. Ahn, H. Peng, H. E. Tseng, “Robust estimation of road friction coefficient,” American Control Conference, San Francisco, CA, 2011, pp. 3948-3953.
[52]S. Hong, J. K. Hedrick, “Tire-road friction coefficient estimation with vehicle steering,” IEEE Intelligent Vehicles Symposium, Gold Coast of Queensland, 2013, pp. 1227-1232.
[53]M. Choi, J. J. Oh, S. B. Choi, “Linearized recursive least squares methods for real-time identification of tire-road friction coefficient,” IEEE Transactions on Vehicular Technology, Vol. 62, 2013, pp. 2906-2918.
[54]林伯勳, 胡光復, 沈哲緯, 辜炳寰, 鄭錦桐, “最佳化法於工程上之應用.”
[55]J. Kennedy, R. C. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, NJ, USA, 1995, pp. IV: 1942-1948.
[56]宋家安, 多動力馬達電動車即時節能驅動及回充煞車力矩分配策略, 碩士論文, 國立台灣大學, 台北, 2015
[57]R. C. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39-43.
[58]李維平, 黃郁授, 戴彰廷, 自適應慣性權重改良粒子群演算法之研究, 碩士論文, 中原大學資訊管理研究所, 桃園, 2008.
[59]林柳絮, 基於粒子群最佳化之強建PID控制器設計與應用, 博士論文, 國立台灣大學, 台北, 2011.
[60]J. Kennedy, ”The behavior of particles,” in Evolutionary Program VII : Proceeding of the Seventh Annual Conference on Evolutionary Programming, CA, 1998.
[61]Y. L. Zheng, L. H. Ma, L. Y. Zhang and J. X. Qian, “Empirical study of particle swarm optimizer with an increasing inertia weight,” in 2003 Congress on Evolutionary Computation, Canberra, 2003.
[62]Y. Chen, J.K. Hedrick, K. Guo, “A novel direct yaw moment controller for in-wheel motor electric vehicles,” International Journal of Vehicle Mechanics and Mobility, Vol. 51, 2013, pp. 925-942.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top