(3.236.228.250) 您好!臺灣時間:2021/04/17 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊世全
研究生(外文):Shih-Chyuan Yang
論文名稱:基於CAD模型的機械手臂去毛邊混合滑模阻抗控制
論文名稱(外文):CAD-Based Robot Arm Deburring Using Hybrid Sliding Mode Impedance Control
指導教授:黃漢邦黃漢邦引用關係
指導教授(外文):Han-Pang Huang
口試委員:蔡清元蔡清池林其禹
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:92
中文關鍵詞:機械手臂去毛邊去毛邊力量模型影像電腦輔助設計電腦輔助製造自由曲面
外文關鍵詞:Robotic deburringForce model of deburringVisionCAD/CAMFree-curved surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在機械手臂去毛邊的領域中,去毛邊的工具與工件之間的接觸力是最重要,去毛邊過程中所產生的力量會影響控制的精準度以及表面粗糙度。本篇論文提出以六軸機械手臂加裝磨輪進行去毛邊,提出混合滑模阻抗控制和模糊控制去除震動。另外也提出計算磨輪與毛邊之間接觸力的去毛邊力量模型,力量模型可以分成三個部分: 磨屑形成力、摩擦力以及刮屑力,其中磨屑形成力和摩擦力是由Werner所提出的力量模型和Malkin的理論推導出來,而刮屑力是由單顆磨粒實驗來推導。使用影像來計算接觸力所需要的毛邊高度與毛邊截面積的資訊,而期望的軌跡由電腦輔助設計軟體和電腦輔助製造軟體所得到,並且也考慮了在自由曲面下的手臂姿態,以避免過大的角度造成手臂的奇異性。

The contact force between the deburring tool and workpiece is the most important in the field of robotic deburring. This contact force will affect the control precise and surface roughness in the deburring processes. This thesis proposes a chattering-free fuzzy hybrid sliding mode impedance control strategy for precision deburring using 6 DOFs robot arm with grinder. The force model of the deburring is proposed to compute the contact force between the grinder and the burr. The force model can be separated into three parts: chip formation force, friction force and plowing force. The deduction of the chip formation force and friction force are based on Werner’s model and Malkin’s grinding theory, and the deduction of the ploughing force is based on single-grit tests. This model uses the burr’s height and cross-section area to calculate contact force, and those information are detected by camera. The desired trajectory is generated by CAD/CAM software. We also consider the orientation of the robot arm on free-curved surface in order to avoid singularity.

誌謝 i
摘要 ii
Abstract iii
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Contributions 3
1.3 Thesis Organization 3
Chapter 2 Force Model of the Burr 5
2.1 Introduction 5
2.2 Definition of Burr 5
2.3 Types of Burrs in Metal Removal 7
2.4 Deburring Tool 8
2.5 Grinding Force of Deburring 8
2.5.1 Chip Formation Force and Friction Force 10
2.5.2 Average Contact Pressure 18
2.5.3 Ploughing Force 22
2.6 Force Model of Deburring 25
Chapter 3 Vision Measurement 27
3.1 Introduction 27
3.2 Method of Vision Measurement 27
Chapter 4 Tool Path Generation 31
4.1 Introduction 31
4.2 Tool Path Generation from CAD Model 31
4.3 Workpiece with Free-curved Surface 32
Chapter 5 Control Schemes of the Robot Manipulator 37
5.1 Introduction 37
5.2 Hybrid Position/Force Control 37
5.3 Impedance Control 39
5.4 Hybrid Sliding Mode Impedance Control 42
5.4.1 Hybrid Sliding Mode Impedance Controller 42
5.4.2 Chattering-Free Hybrid Sliding Mode Impedance Controller 49
Chapter 6 Implementation and Experiments 57
6.1 Hardware Platform 57
6.1.1 NTU Robot Arm 57
6.1.2 Force Sensor 60
6.1.3 Vision Sensing 61
6.1.4 Deburring Tool 61
6.1.5 Real-Time Control System 62
6.2 Experiments 63
Chapter 7 Conclusions and Future Works 87
7.1 Conclusions 87
7.2 Future Works 88
References 89


[1]International Standard ISO 13715:2000, Technical drawings – Edges of undefined shape – Vocabulary and indications.
[2]Ipos360x Sx Multi-Axis Motion System. Retrieved June, 2016, from http://www.technosoftmotion.com/en/
[3]Ipos3604 Vx Intelligent Drive. Retrieved June, 2016, from http://www.technosoftmotion.com/en/intelligent-drives-and-motors/ipos-line/ipos3604/ipos3604-vx
[4]N. Asakawa, K. Toda, and Y. Takeuchi, "Automation of Chamfering by an Industrial Robot; for the Case of Hole on Free-Curved Surface," Robotics and Computer-Integrated Manufacturing, Vol. 18, No. 5-6, pp. 379-385, 2002.
[5]F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, and L. G. Franquelo, "Speed Control of Induction Motors Using a Novel Fuzzy Sliding-Mode Structure," IEEE Transactions on Fuzzy Systems, Vol. 10, No. 3, pp. 375-383, 2002.
[6]D. J. Buckmaster, W. S. Newman, and S. D. Somes, "Compliant Motion Control for Robust Robotic Surface Finishing," Proc. of World Congress on Intelligent Control and Automation, Chongqing, China, Vol. 7, pp. 559-564, 2008.
[7]L. Chin-Gook, P. Jae-Sam, A. Hyun-Sik, and K. Do-Hyun, "Sliding Mode-Like Fuzzy Logic Control with Self-Tuning the Dead Zone Parameters," IEEE Transactions on Fuzzy Systems Vol. 1, No. 2, pp. 544-549, 22-25 Aug. 1999 2001.
[8]M. M. Daniali and G. Vossoughi, "Intelligent Active Vibration Control of Constrained Manipulaors in Robotic Deburring," Proc. of International Conference on Industrial Mechatronics and Automation, Chengdu, China, pp. 76-80, 2009.
[9]M. De Vathaire, F. Delamare, and E. Felder, "An Upper Bound Model of Ploughing by a Pyramidal Indenter," Wear, Vol. 66, No. 1, pp. 55-64, 1981.
[10]H. Feng-Yih and F. Li-Chen, "A New Adaptive Fuzzy Hybrid Force/Position Control for Intelligent Robot Deburring," Proc. of IEEE International Conference on Robotics and Automation, Detroit, USA, Vol. 3, pp. 2476-2481, 1999.
[11]L. K. Gillespie, "Advances in Deburring," Society of Manufacturing Engineers,1978.
[12]L. K. Gillespie, "The Battle of the Burr: New Strategies and New Tricks," Manufacturing Engineering, Vol. 116, No. 2, pp. 69-78, 1996.
[13]L. K. Gillespie, "Deburring, an Annotated Bibliography," Technical Report, Society of Manufacturing Engineers, Vol. 3, No. MRR76-07, pp. 1-59, 1976.
[14]L. K. Gillespie and P. T. Blotter, "The Formation and Properties of Machining Burrs," Journal of Engineering for Industry, Vol. 98, No. 1, pp. 66-74, 1976.
[15]L. Gustafsson, "Tips on Deburring with Robots," American Mechanist, pp. 136-139, 1984.
[16]R. S. Hahn, "The Effect of Wheel-Work Conformity in Precision Grinding," Transactions of The ASME, Vol. 77, No. 8, pp. 1325-1329, 1955.
[17]N. Hogan, "Impedance Control: An Approach to Manipulation," Proc. of American Control Conference, San Diego, USA, pp. 304-313, 1984.
[18]L. Hwan-Rong and W. Wen-June, "Fuzzy Control Design for the Pre-Specified Trajectory Tracking with Sliding Mode," Proc. of IEEE International Conference on Fuzzy Systems, Anchorage, USA, Vol. 1, pp. 292-295, 1998.
[19]J. B. Hyunjoong Kim, Jae Bok Song, "Direct Teaching and Playback Algorithm for Peg-in-Hole Task Using Impedance Control," Journal of Institute of Control, Robotics and Systems, Vol. 15, No. 5, pp. 538-542, 2009.
[20]C. Jen-Yang and L. Ying-Hao, "A Self-Tuning Fuzzy Controller Design," Proc. of IEEE International Conference on Neural Networks, Perth, Australia, Vol. 3, pp. 1358-1362, 1995.
[21]M. Jinno, F. Ozaki, T. Yoshimi, K. Tatsuno, M. Takahashi, M. Kanda, Y. Tamada, and S. Nagataki, "Development of a Force Controlled Robot for Grinding, Chamfering and Polishing," Proc. of IEEE International Conference on Robotics and Automation, Nagoya, Japan, Vol. 2, pp. 1455-1460, 1995.
[22]S. Kannappan and S. Malkin, "Effects of Grain Size and Operating Parameters on the Mechanics of Grinding," Journal of Engineering for Industry, Vol. 94, No. 3, pp. 833-842, 1972.
[23]H. Kazerooni, "Automated Robotic Deburring Using Impedance Control," IEEE Control Systems Magazine, Vol. 8, No. 1, pp. 21-25, 1988.
[24]H. Kazerooni, "Automated Roboting Deburring Using Electronic Compliancy; Impedance Control," Proc. of IEEE International Conference on Robotics and Automation, Raleigh, USA, Vol. 4, pp. 1025-1032, 1987.
[25]W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, 2nd Edition, United Kingdom: Kogan Page Science, 2002.
[26]K.-C. Lee, H.-P. Huang, T.-H. Kuo, and Y.-L. Liu, "Force Control with Vision Feedback for Robotic Deburring Processes," Advanced Science Letters, Vol. 8, No. 1, pp. 858-862, 2012.
[27]K.-C. Lee, H.-P. Huang, and S.-S. Lu, "Burr Detection by Using Vision Image," The International Journal of Advanced Manufacturing Technology, Vol. 8, No. 5, pp. 275-284, 1993.
[28]S. Lee, C. Li, D. Kim, J. Kyung, and C. Han, "The Direct Teaching and Playback Method for Robotic Deburring System Using the Adaptiveforce-Control," Proc. of IEEE International Symposium on Assembly and Manufacturing, Suwon, South Korea, pp. 235-241, 2009.
[29]L. Lichun, F. Jizai, and J. Peklenik, "A Study of Grinding Force Mathematical Model," CIRP Annals - Manufacturing Technology, Vol. 29, No. 1, pp. 245-249, 1980.
[30]I. C. Lin and F. Li-Chen, "Adaptive Hybrid Force/Position Control of a Flexible Manipulator for Automated Deburring with Online Cutting Trajectory Modification," Proc. of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 1, pp. 818-825, 1998.
[31]W.-S. Lin and C.-S. Chen, "Sliding-Mode-Based Direct Adaptive Fuzzy Controller Design for a Class of Uncertain Multivariable Nonlinear Systems," Proc. of American Control Conference, Anchorage, USA, Vol. 4, pp. 2955-2960, 2002.
[32]R. P. Lindsay, On the Metal Removal and Wheel Removal Parameters—Surface Finish, Geometry and Thermal Damage in Precision Grinding, Ph.D. Thesis, Worcester Polytechnic Institute, 1971.
[33]Q. Liu, X. Chen, Y. Wang, and N. Gindy, "Empirical Modelling of Grinding Force Based on Multivariate Analysis," Journal of Materials Processing Technology, Vol. 203, No. 1–3, pp. 420-430, 2008.
[34]F. Nagata, Y. Kusumoto, Y. Fujimoto, and K. Watanabe, "Robotic Sanding System for New Designed Furniture with Free-Formed Surface," Robotics and Computer-Integrated Manufacturing, Vol. 23, No. 4, pp. 371-379, 2007.
[35]R. Palm, "Sliding Mode Fuzzy Control," Proc. of IEEE International Conference on Fuzzy Systems, San Diego, USA, Vol. 1, pp. 519-526, 1992.
[36]U. S. Patnaik Durgumahanti, V. Singh, and P. Venkateswara Rao, "A New Model for Grinding Force Prediction and Analysis," International Journal of Machine Tools and Manufacture, Vol. 50, No. 3, pp. 231-240, 2010.
[37]R. P. C. Paul, Modelling, Trajectory Calculation and Servoing of a Computer Controlled Arm, Stanford University, 1972.
[38]D. A. D. R. Narayanaswami, "Design and Process Planning Strategies for Burr Minimization and Deburring, Namrc," Transactions of North American Manufacturing Research Conference, Vol. 22, pp. 313-322, 1994.
[39]M. H. Raibert and J. J. Craig, "Hybrid Position/Force Control of Manipulators," Journal of Dynamic Systems, Measurement, and Control, Vol. 103, No. 2, pp. 126-133, 1981.
[40]C. Rubenstein, "The Mechanics of Grinding," International Journal of Machine Tool Design and Research, Vol. 12, No. 2, pp. 127-139, 1972.
[41]C. G. S. Malkin, Grinding Technology : Theory and Applications of Machining with Abrasives, 2nd Edition, New York: Industrial Press Inc., pp.44-53, 2008.
[42]R. Se-Hee and P. Jahng-Hyon, "Auto-Tuning of Sliding Mode Control Parameters Using Fuzzy Logic," Proc. of American Control Conference, Arlington, USA, Vol. 1, pp. 618-623, 2001.
[43]J. Shi, J. Ma, and H. Zhang, "Fuzzy Sliding Mode Control Based on the Nominal Model for Manipulator," Proc. of IEEE International Conference on Information and Automation, Lijiang, China, pp. 547-551, 2015.
[44]K. Shimokura and L. Sheng, "Programming Deburring Robots Based on Human Demonstration with Direct Burr Size Measurement," Proc. of IEEE International Conference on Robotics and Automation, San Diego, USA, Vol. 1, pp. 572-577, 1994.
[45]J.-J. E. Slotine and W. Li, Applied Nonlinear Control, 1st Edition, New Jersey: New Jersey Prentice-Hall Englewood Cliffs, 1991.
[46]H. C. Song, B. S. Kim, and J. B. Song, "Tool Path Generation Based on Matching between Teaching Points and Cad Model for Robotic Deburring," Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kachsiung, Taiwan, pp. 890-895, 2012.
[47]J. Tang, J. Du, and Y. Chen, "Modeling and Experimental Study of Grinding Forces in Surface Grinding," Journal of Materials Processing Technology, Vol. 209, No. 6, pp. 2847-2854, 2009.
[48]H. Temeltas, "A Fuzzy Adaptation Technique for Sliding Mode Controllers," Proc. of IEEE International Symposium on Industrial Electronics, Pretoria, South Africa, Vol. 1, pp. 110-115, 1998.
[49]T. E. Thomessen, Ole J; Larsen, Jon Lund; Andersen, Torgrim; Pedersen, Jahn E, "Automatic Programming of Grinding Robot," Modeling, Identification and Control, Vol. 14, No. 2, pp. 93-105, 1993.
[50]M.-D. Tran and H.-J. Kang, "Adaptive Fuzzy Pid Sliding Mode Controller of Uncertain Robotic Manipulator," International Conference on Intelligent Computing Theories and Methodologies, Fuzhou, China, Vol. 9226, pp. 92-103, 2015.
[51]K.-Y. Tu, T.-T. Lee, and W.-J. Wang, "Design of a Multi-Layer Fuzzy Logic Controller for Multi-Input Multi-Output Systems," Fuzzy Sets and Systems, Vol. 111, No. 2, pp. 199-214, 2000.
[52]V. Utkin and L. Hoon, "Chattering Problem in Sliding Mode Control Systems," Proc. of International Workshop on Variable Structure Systems, Alghero, Sardinia, pp. 346-350, 2006.
[53]U. S. P. D. Vijayender Singh, P. Venkateswara Rao, S. Ghosh, "Specific Ploughing Energy Model Using Single Grit Scratch Test," International Journal of Abrasive Technology, Vol. 4, No. 2, pp. 156-173, 2011.
[54]X. Wang, Y. Wang, and Y. Xue, "Intelligent Compliance Control for Robotic Deburring Using Fuzzy Logic," Proc. of IEEE International Conference on Industrial Informatics, Singapore, Vol. 4, pp. 91-96, 2006.
[55]X. l. Wang, Y. Wang, and Y. n. Xue, "An Adaptive Algorithm for Robotic Deburring Based on Impedance Control," Proc. of IEEE International Symposium on Industrial Electronics, Montreal, Que, Vol. 1, pp. 262-266, 2006.
[56]J. T. Wen and S. Murphy, "Stability Analysis of Position and Force Control for Robot Arms," IEEE Transactions on Automatic Control, Vol. 36, No. 3, pp. 365-371, 1991.
[57]G. Werner, "Influence of Work Material on Grinding Forces," Annals of the CIRP, Vol. 27, No. 1, pp. 243-248, 1978.
[58]L. K. Wong, F. H. F. Leung, and P. K. S. Tam, "A Fuzzy Sliding Controller for Nonlinear Systems," IEEE Transactions on Industrial Electronics, Vol. 48, No. 1, pp. 32-37, 2001.
[59]Z. Xiaoyu, S. Hongye, and C. Jian, "Adaptive Sliding Mode-Like Fuzzy Logic Control for High Order Nonlinear Systems," Proc. of IEEE International Symposium on Intelligent Control, Houston, USA, pp. 788-792, 2003.
[60]T. Yoshikawa, "Force Control of Robot Manipulators," IEEE International Conference on Robotics and Automation, San Francisco, USA, Vol. 1, pp. 220-226, 2000.
[61]K. D. Young, V. I. Utkin, and U. Ozguner, "A Control Engineer''s Guide to Sliding Mode Control," IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 328-342, 1999.
[62]M. Younis, M. M. Sadek, and T. El-Wardani, "A New Approach to Development of a Grinding Force Model," Journal of Engineering for Industry, Vol. 109, No. 4, pp. 306-313, 1987.
[63]M. Zeinali, "Adaptive Chattering-Free Sliding Mode Control Design Using Fuzzy Model of the System and Estimated Uncertainties and Its Application to Robot Manipulators," Proc. of International Workshop on Recent Advances in Sliding Modes, pp. 1-6, 2015.
[64]H. Zhang, H. Chen, N. Xi, G. Zhang, and J. He, "On-Line Path Generation for Robotic Deburring of Cast Aluminum Wheels," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2400-2405, 2006.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔