(3.238.174.50) 您好!臺灣時間:2021/04/17 05:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉貽仁
研究生(外文):Yi-Ren Liu
論文名稱:機器手掌與機器手臂自動抓取規劃與軌跡規劃
論文名稱(外文):Automated Grasp Planning and Path Planning for a Robot Hand-Arm System
指導教授:黃漢邦黃漢邦引用關係
口試委員:林錫寬曾清秀黃國勝
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:86
中文關鍵詞:機器手臂機器手掌抓取規劃軌跡規劃表面重建
外文關鍵詞:Robot Hand-Arm SystemGrasp PlanningPath PlanningSurface Reconstruction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
多指機器手掌抓取物體的分析,一直是機器人研究中十分重要的研究議題。日常生活中,物體並不會是個簡單的幾何形狀,例如方形、圓形、圓柱、錐形。而是像馬克杯、小花瓶、清潔劑等,較為複雜的形狀。而多指機器手掌的自由度比起機器夾爪多了許多,找到有效的抓取點就變得十分重要。因此,本論文旨在探討如何在複雜幾何的物體上利用力旋量空間尋找多指機器手掌可抓取的姿態以及根據物體邊界盒限制機器手臂可到達的區域加速找到一組可以抓取的最終姿態。再以阻尼最小平方法解決逆運動學中奇異點問題,並且在六軸機器手臂軸空間中,利用兩棵快速擴展隨機樹連接法尋找避開障礙物的路徑。並透過三維點雲進行點雲處理並重建環境以及物體表面模型,以達到自動化抓取的目標。

Analysis of a multi-fingered robot hand for grasping objects is an important research issue in robotics. Objects in daily life are not simple geometric shape like square, spherical, cylindrical, conical shapes. Most are the complex geometric shapes. Since the number of degrees of freedom of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This thesis mainly focuses on how to determine the grasping points on the complex geometric shapes with the multi-fingered robot hand. Each grasping can be described by grasp wrench space (GWS). The quality measure can be determined from analyzing the GWS. The bounding box of object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the random based algorithm can speed up the searching speed. The damped least square (DLS) method is use for solving the inverse kinematics problem about singular points. The rapidly-exploring random trees (RRT) – connect algorithm is used to search for the collision-free path in the joint space of the robot arm. The point cloud can be processed by point cloud processing and surface reconstruction. It combines the real environment and simulation. The goal can be reached through these methods.

誌謝 i
摘要 ii
Abstract iii
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contributions 2
1.3 Organization 3
Chapter 2 Kinematics 5
2.1 Introduction 5
2.2 Forward Kinematics 6
2.2.1 Transformation Matrix 6
2.2.2 Kinematic Chain 7
2.2.3 Denavit-Hartenberg (DH) Convention 7
2.2.4 Forward Kinematics 10
2.2.5 Forward Kinematics of Multiple End-Effectors 11
2.3 Inverse Kinematics Algorithms 12
2.3.1 Jacobian Matrix 13
2.3.2 The Jacobian Transpose Method 16
2.3.3 The Pseudoinverse Method 16
2.3.4 Damped Least Square (DLS) Method 18
2.4 Summary 19
Chapter 3 Grasp Analysis and Synthesis 25
3.1 Introduction 25
3.2 Background 25
3.2.1 Contact Kinematics 25
3.2.2 Contact Models 27
3.2.3 Friction Cone 29
3.2.4 Grasp Wrench Space 30
3.3 Grasp Quality Measure 33
3.3.1 Example 35
3.4 Grasp Planning 37
Chapter 4 Path Planning 41
4.1 Introduction 41
4.2 Rapidly-Exploring Random Trees 42
4.2.1 The Basic RRT algorithm 43
4.2.2 The RRT-Connect Algorithm 47
4.3 Path Pruning Algorithm 49
4.4 Planning Algorithm 51
4.4.1 Path Planning Algorithm 51
4.4.2 Grasp with Path Planning Algorithm 51
4.5 Summary 52
Chapter 5 Object Reconstruction 55
5.1 Introduction 55
5.2 Point Cloud Processing 56
5.2.1 Pass Through Filter 56
5.2.2 Down-Sampling 57
5.2.3 Random Sample Consensus 58
5.2.4 Euclidean Segmentation 59
5.3 Surface Reconstruction 61
Chapter 6 Simulations and Experiments 65
6.1 Hardware Platform 65
6.1.1 Six-DOF Robot Arm 65
6.1.2 NTU Robotic Hand V 66
6.1.3 Sensors 69
6.2 Software Platform 71
6.3 Simulation Results and Experiment Demonstrations 73
6.3.1 Grasping Results: Ball 76
6.3.2 Grasping Results: Bottle 78
6.3.3 Grasping Results: Joystick 79
Chapter 7 Conclusions and Future Works 81
7.1 Conclusions 81
7.2 Future Works 82
References 83

[1]Bullet Physics. Retrieved June, 2016, from http://bulletphysics.org/wordpress/
[2]Eigen Library. Retrieved June, 2016, from http://eigen.tuxfamily.org/
[3]Microsoft Kinect. Retrieved June, 2016, from https://developer.microsoft.com/
[4]Point Cloud Library. Retrieved June, 2016, from http://pointclouds.org/
[5]Qhull Library. Retrieved June, 2016, from http://www.qhull.org/
[6]Xbox. Retrieved June, 2016, from http://www.xbox.com/zh-TW/kinect
[7]J. Baillieul, "Kinematic Programming Alternatives for Redundant Manipulators," Proceeding of IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, Vol. 2, pp. 722-728, 1985.
[8]A. Balestrino, G. De Maria, and L. Sciavicco, "Robust Control of Robotic Manipulators," Proceeding of the 9th IFAC World Congress, Budapest, Hungary, Vol. 5, pp. 2435-2440, 1984.
[9]A. M. a. J. S.-B. Beatriz León, From Robot to Human Grasping Simulation, 1st Edition, New York: Springer, 2014.
[10]J. L. Bentley, "Multidimensional Binary Search Trees Used for Associative Searching," Communications of the ACM, Vol. 18, No. 9, pp. 509-517, 1975.
[11]J. Berkmann and T. Caelli, "Computation of Surface Geometry and Segmentation Using Covariance Techniques," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 11, pp. 1114-1116, 1994.
[12]A. Bicchi, "On the Closure Properties of Robotic Grasping," The International Journal of Robotics Research, Vol. 14, No. 4, pp. 319-334, 1995.
[13]A. Bicchi and V. Kumar, "Robotic Grasping and Contact: A Review," Proceeding of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 1, pp. 348-353, 2000.
[14]C. Borst, M. Fischer, and G. Hirzinger, "A Fast and Robust Grasp Planner for Arbitrary 3d Objects," Proceeding of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 3, pp. 1890-1896, 1999.
[15]C. Borst, M. Fischer, and G. Hirzinger, "Grasp Planning: How to Choose a Suitable Task Wrench Space," Proceeding of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, Vol. 1, pp. 319-325 Vol.1, 2004.
[16]S. R. Buss, "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods," IEEE Journal of Robotics and Automation, Vol. 17, No. 1-19, p. 16, 2004.
[17]J. Canny, The Complexity of Robot Motion Planning, 1st Edition, Cambridge, MA: MIT press, 1988.
[18]L. P. Chou, Design of Intelligent Robotic Hand, Graduate Insitute of Mechanical Engineering, National Taiwan University, 2009.
[19]A. M. Dollar and R. D. Howe, "Joint Coupling Design of Underactuated Grippers," Proceeding of ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA, USA, pp. 903-911, 2006.
[20]C. Ericson, Real-Time Collision Detection, 1st Edition, Boca Raton, FL: CRC Press, 2004.
[21]C. Ferrari and J. Canny, "Planning Optimal Grasps," Proceeding of IEEE International Conference on Robotics and Automation, Nice, French, pp. 2290-2295, 1992.
[22]Y. K. Hwang and N. Ahuja, "A Potential Field Approach to Path Planning," IEEE Transactions on Robotics and Automation, Vol. 8, No. 1, pp. 23-32, 1992.
[23]I. Kao, K. Lynch, and J. W. Burdick, "Contact Modeling and Manipulation," in Springer Handbook of Robotics, Berlin: Springer, pp. 647-669, 2008.
[24]M. Kazhdan, M. Bolitho, and H. Hoppe, "Poisson Surface Reconstruction," Proceeding of the fourth Eurographics symposium on Geometry processing, Sardinia, Italy, Vol. 7, 2006.
[25]D. Kirkpatrick, B. Mishra, and C.-K. Yap, "Quantitative Steinitz''s Theorems with Applications to Multifingered Grasping," Discrete & Computational Geometry, Vol. 7, No. 3, pp. 295-318, 1992.
[26]K. Klasing, D. Althoff, D. Wollherr, and M. Buss, "Comparison of Surface Normal Estimation Methods for Range Sensing Applications," Proceeding of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3206-3211, 2009.
[27]J. J. Kuffner and S. M. LaValle, "Rrt-Connect: An Efficient Approach to Single-Query Path Planning," Proceeding of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, Vol. 2, pp. 995-1001 vol.2, 2000.
[28]Y. Kwangjin and S. Sukkarieh, "3d Smooth Path Planning for a Uav in Cluttered Natural Environments," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, French, pp. 794-800, 2008.
[29]S. M. LaValle, "Rapidly-Exploring Random Trees a New Tool for Path Planning," Computer Science Department, Iowa State University,No. TR 98-11, 1998.
[30]D. Levin, "Mesh-Independent Surface Interpolation," in Geometric Modeling for Scientific Visualization Springer, 2004 pp. 37-49.
[31]H. Liu and G. Hirzinger, "Cartesian Impedance Control for the Dlr Hand," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, South Korea, Vol. 1, pp. 106-112, 1999.
[32]A. A. Maciejewski and C. A. Klein, "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments," The international journal of robotics research, Vol. 4, No. 3, pp. 109-117, 1985.
[33]Z. C. Marton, R. B. Rusu, and M. Beetz, "On Fast Surface Reconstruction Methods for Large and Noisy Point Clouds," Proceeding of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3218-3223, 2009.
[34]M. T. Mason and J. K. Salisbury Jr, "Robot Hands and the Mechanics of Manipulation," IEEE Journal on Robotics and Automation, Vol. 2, No. 1, p. 59, 1985.
[35]A. T. Miller and P. K. Allen, "Examples of 3d Grasp Quality Computations," Proceeding of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 2, pp. 1240-1246, 1999.
[36]A. T. Miller and P. K. Allen, "Graspit! A Versatile Simulator for Robotic Grasping," IEEE Robotics & Automation Magazine, Vol. 11, No. 4, pp. 110-122, 2004.
[37]R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, 1st Edition, Boca Raton, FL: CRC press, 1994.
[38]Y. Nakamura and H. Hanafusa, "Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control," Journal of dynamic systems, measurement, and control, Vol. 108, No. 3, pp. 163-171, 1986.
[39]V.-D. Nguyen, "Constructing Force-Closure Grasps," The International Journal of Robotics Research, Vol. 7, No. 3, pp. 3-16, 1988.
[40]H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert, and P. Lischinsky, "Friction Models and Friction Compensation," European journal of control, Vol. 4, No. 3, pp. 176-195, 1998.
[41]D. E. Orin and W. W. Schrader, "Efficient Computation of the Jacobian for Robot Manipulators," The International Journal of Robotics Research, Vol. 3, No. 4, pp. 66-75, 1984.
[42]N. S. Pollard, "Synthesizing Grasps from Generalized Prototypes," Proceeding of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, Vol. 3, pp. 2124-2130, 1996.
[43]A. Ramdane-Cherif, B. Daachi, A. Benallegue, and N. Lévy, "Kinematic Inversion," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Vol. 2, pp. 1904-1909, 2002.
[44]M. A. Roa and R. Suárez, "Computation of Independent Contact Regions for Grasping 3-D Objects," IEEE Transactions on Robotics, Vol. 25, No. 4, pp. 839-850, 2009.
[45]M. A. Roa and R. Suarez, "Grasp Quality Measures: Review and Performance," Autonomous Robots, Vol. 38, No. 1, pp. 65-88, Jan 2015.
[46]R. B. Rusu, "Semantic 3d Object Maps for Everyday Manipulation in Human Living Environments," KI-Künstliche Intelligenz, Vol. 24, No. 4, pp. 345-348, 2010.
[47]J. K. Salisbury and B. Roth, "Kinematic and Force Analysis of Articulated Mechanical Hands," Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, No. 1, pp. 35-41, 1983.
[48]J. T. Schwartz and M. Sharir, "On the Piano Movers'' Problem: Iii. Coordinating the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal Barriers," The International Journal of Robotics Research, Vol. 2, No. 3, pp. 46-75, 1983.
[49]C. M. Shakarji, "Least-Squares Fitting Algorithms of the Nist Algorithm Testing System," Journal of Research-National Institute of Standards and Technology, Vol. 103, pp. 633-641, 1998.
[50]B. Siciliano and O. Khatib, Springer Handbook of Robotics, 1st Edition, New York: Springer, 2008.
[51]B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, 1st Edition, New York: Springer, 2010.
[52]S. Skiena, "Dijkstra''s Algorithm," in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Boston: Addison-Wesley Longman, pp. 225-227, 1990.
[53]M. Teichmann, "A Grasp Metric Invariant under Rigid Motions," Proceeding of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, Vol. 3, pp. 2143-2148, 1996.
[54]N. Vahrenkamp, T. Asfour, and R. Dillmann, "Simultaneous Grasp and Motion Planning: Humanoid Robot Armar-Iii," IEEE Robotics & Automation Magazine, Vol. 19, No. 2, pp. 43-57, 2012.
[55]N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann, and G. Sandini, "Simox: A Robotics Toolbox for Simulation, Motion and Grasp Planning," in Intelligent Autonomous Systems 12: Volume 1 Proceedings of the 12th International Conference Ias-12, Held June 26-29, 2012, Jeju Island, Korea S. Lee, H. Cho, K.-J. Yoon, and J. Lee, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013 pp. 585-594.
[56]C. W. Wampler, "Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods," IEEE Transactions on Systems, Man and Cybernetics, Vol. 16, No. 1, pp. 93-101, 1986.
[57]L.-C. T. Wang and C. C. Chen, "A Combined Optimization Method for Solving the Inverse Kinematics Problems of Mechanical Manipulators," IEEE Transactions on Robotics and Automation, Vol. 7, No. 4, pp. 489-499, 1991.
[58]D. E. Whitney, "Resolved Motion Rate Control of Manipulators and Human Prostheses," IEEE Transactions on man-machine systems, Vol. 10, No. 2, pp. 47-53, 1969.
[59]W. A. Wolovich and H. Elliott, "A Computational Technique for Inverse Kinematics," Proceeding of IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 1359-1363, 1984.
[60]N. Xydas and I. Kao, "Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, with Experimental Results," The International Journal of Robotics Research, Vol. 18, No. 9, pp. 941-950, 1999.
[61]T. Yoshikawa, "Dynamic Manipulability of Robot Manipulators," Proceeding of IEEE International Conference on Robotics and Automation, St. Louis, Missouri, USA, Vol. 2, pp. 1033-1038, 1985.
[62]T. Yoshikawa, "Manipulability of Robotic Mechanisms," The international journal of Robotics Research, Vol. 4, No. 2, pp. 3-9, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔