跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳侑璋
研究生(外文):You-Jhang Wu
論文名稱:聲射訊號應用於砂輪堵塞與工件表面粗糙度之監控
論文名稱(外文):Application of Acoustic Emission on Monitoring of Chip Loading and Surface Roughness for Grinding
指導教授:蔡曜陽蔡曜陽引用關係
指導教授(外文):Yao-Yang Tsai
口試委員:盧銘詮李貫銘羅勝益
口試委員(外文):Ming-Chyuan LuKuan-Ming LiShenq-Yih Luo
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:269
中文關鍵詞:聲射訊號修整平面研磨表面粗糙度堵塞
外文關鍵詞:acoustic emissiondressingsurface grindingsurface roughnesschip loading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
磨削是以砂輪磨粒進行材料移除,其提供良好精密與表面粗糙度,而黏屑會堵塞砂輪孔洞與磨料刃邊影響磨削能力,因此需即時判斷修整之時機,維持砂輪磨削能力與加工物之良好表面粗糙度。
本研究為一種監控砂輪磨削狀態之系統,透過砂輪在磨削材料所產生內部結構變化之聲能,以能量響應偵測砂輪表面與孔洞的黏屑狀態,達到加工物表面粗糙度的控制。藉由傅立葉轉換之頻率響應特定區間內可偵測到黏屑填補與脫落之趨勢,以反應黏屑之狀態進而預測表面粗糙度,提供在微細加工方面避免加工物燒傷以及監控品質上。
本研究利用磨削參數探討黏屑情況進而預測工件的表面粗糙度,將黏屑狀態存在砂輪表面分為三個部分,第一部分為響應上升區,其代表黏屑填補砂輪孔洞直到趨近於平面,其保有良好表面粗糙度;第二部分為響應驟降區,其代表黏屑首次脫落,則砂輪表面逐漸凹凸不平;第三部分為響應低點區,則為黏屑持續脫落導致砂輪表面惡化進而影響工件的表面粗糙度,經實驗驗證,磨削參數改變黏屑區域然後影響工件的表面粗糙度。
透過劃分能量響應區域能夠判別黏屑區域與砂輪填塞之情形以達到監控砂輪狀態之目的,偵測到能量響應低點處則進行砂輪修整,成功達到控制表面粗糙度之品質監控。


Grinding processing is an important part of precision machining. Grinding technology provided fine precision and surface roughness. Grinding is used abrasive grain to removal material; however, chip loading clogged the pores of grinding wheel and edge of abrasive to affect ability of grinding, so immediate dress is necessary to maintain fine surface roughness of workpiece.
The purpose of this study was to monitor the state of grinding wheel by acoustic energy of changed structure from grinding materials, detecting the state of chip loading of wheel surface and pore to control the surface roughness of workpiece.
The method used in this paper was to detect trend of chip loading fill and drop by magnitude of spectrum, to reflect state of chip loading and predict surface roughness, this method provided to avoid the burns and monitor the quality for workpiece.
This study investigated the state of chip loading with grinding parameter to predict surface roughness of workpiece. The results of the experiment indicated that the chip loading status divided into three parts; the first part was magnitude rise area that was chip loading filled pores in the wheel until close to the plane, workpiece maintain good surface roughness; the second part was magnitude fall area that was chip loading dropping first, this phenomenon made surface of grinding wheel rugged; the third part was low magnitude area that was chip loading continually dropping deteriorate surface of wheel and affecting the roughness of workpiece surface. The experiment verified grinding parameters change chip loading region and affect the workpiece surface roughness.
The findings of the research have led to the conclusion that acoustic emission signal was transformed by Fast Fourier Transform, this method can be determined area of chip loading and situation of grinding wheel loading in order to achieve to monitor grinding. When the magnitude of spectrum reach the low range, grinding wheel is going to dress. This method has been successfully controlling the quality of the surface roughness.


致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XXVII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究動機與目的 5
1.4 論文大綱 7
第二章 相關理論 8
2.1 磨削理論 8
2.2 磨削磨損 9
2.2.1 磨損磨耗 9
2.2.2 破碎磨耗 9
2.2.3 膠合破裂 10
2.3 磨削切屑幾何理論 10
2.3.1 接觸弧長[15] 10
2.3.2 磨削切屑厚度 11
2.4 聲射訊號 13
2.4.1 聲射理論 13
2.4.2 訊號處理分析 14
2.5 砂輪 15
2.5.1 磨粒種類 16
2.5.2 粒度 18
2.5.3 結合度 18
2.5.4 組織 19
2.5.5 結合劑 19
2.6 表面粗糙度理論 20
2.6.1 表面組織定義 20
2.6.2 表面量測相關術語 21
2.6.3 表面粗糙度表示方式 22
2.7 二值化理論 25
第三章 實驗設備與方法 27
3.1 實驗規劃與流程 27
3.2 實驗系統架構與程序 28
3.2.1 實驗架構 28
3.2.2 實驗程序 30
3.3 實驗設備與儀器 34
3.3.1 超精密平面磨床GS-45PFNC 34
3.3.2 砂輪選用 36
3.3.3 工件材料 37
3.3.4 加工音檢出裝置 37
3.3.5 聲射感測器 39
3.3.6 聲射感測放大器 40
3.3.7 資料擷取卡 41
3.3.8 CompactRIO 控制與機電組合 42
3.3.9 Mitutoyo SJ400表面粗度儀 43
3.3.10 keyence數位顯微鏡 43
第四章 實驗結果與討論 45
4.1 磨削參數對頻率響應的影響 45
4.1.1 磨削深度對頻率響應之影響 47
4.1.2 工件速度對頻率響應的影響 54
4.1.3 砂輪號數對頻率響應的影響 60
4.2 磨削參數對黏屑比的影響 91
4.2.1 磨削深度對黏屑比的影響 94
4.2.2 工件速度對黏屑比的影響 102
4.2.3 砂輪號數對黏屑比的影響 107
4.3 磨削參數對表面粗糙度的影響 112
4.3.1 磨削深度對表面粗糙度的影響 121
4.3.2 工件速度對表面粗糙度的影響 125
4.3.3 砂輪號數對表面粗糙度的影響 129
第五章 結論與未來展望 133
5.1 結論 133
5.2 未來展望 134
參考文獻 135
附錄A 磨削深度對應磨削總長度之時域與頻域圖 138
附錄B 工件速度對應磨削總長度之時域與頻域圖 155
附錄C 磨削深度對應磨削總長度之堵塞圖與二值化圖 171
附錄D 工件速度對應磨削總長度之堵塞圖與二值化圖 202
附錄E 砂輪號數對應磨削總長度之堵塞圖與二值化圖 236
附錄F 砂輪號數對應磨削總長度之時域與頻域圖 256



[1]S. Yossifon and C. Rubenstein, "The Grinding of Workpieces Exhibiting High Adhesion. I.-- Mechanisms," J. Eng. Ind.(Trans. ASME), vol. 103, pp. 144-155, 1981.
[2]A. P. Nagaraj and A. Chattopadhyay, "On some aspects of wheel loading," Wear, vol. 135, pp. 41-52, 1989.
[3]張長宏,”奈米切削液對磨削鈦合金的影響”,碩士論文,台灣大學,2007.
[4]陳威帆,”金屬基複合材料之磨削性研究”,碩士論文,台灣大學,2009.
[5]Aguiar, Paulo R., ''In-process grinding monitoring through acoustic emission'', Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 25, pp. 118-124, 2006.
[6]T.W. Hwang, E.P. Whitenton, N.N. Hsu, G.V. Blessing, C.J. Evans, ''Acoustic emission monitoring of high speed grinding of silicon nitride
[7]H.K. Tonshoff, M. Jung, S. Mannel, W.Rietz, 2000, “Using acoustic emission signals for monitoring of production processes”, Ultrasonics, Vol.37, pp.681-686.
[8]Amin A Mokbel, T.M.A Maksoud,“Monitoring of the condition of diamond grinding wheels using acoustic emission technique”, Journal of Materials Processing Technology, Vol. 101, Issues 1–3, 14 April 2000, pp. 292-297
[9]Arul Saravananriyan, D r. L. Vijayaraghavan, Dr. R. Krishnamurthy, 2001, “On-line Detection of Grinding Burn by Integrated Sensing”,Slcon’ 01Sensors for Industry Conference Rosemount, pp.5-7, USA.
[10]J Webster, I Marinescu, R Bennett, R Lindsay,” Acoustic emission for process control and monitoring of surface integrity during grinding”, CIRP Annals-Manufacturing Technology, Vol 43, Issue 1, 1994, pp. 299-304
[11]Eun-Sang Lee,Jeong-Du Kim,Nam-Hun Kim,Plunge grinding characteristics using the current singal of spindle motor,Joural of Materials Processing Technology , Vol.132 , pp.58-66 , 2003
[12]W. Lortz, A model of the cutting mechanism in grinding,Wear,Vol.53, pp.115, 1979.
[13]R. McEachron and E. Ratterman, "Diamond processing of structural ceramics," Ceramic Engineering and Science Proceedings, vol. 7, pp. 1063-1069, 1986.
[14]H. Tsuwa. An investigation of grinding wheel cutting edges. J. Eng. Ind. (November 1964), pp. 371–382.
[15]Stephen Malkin, “Grinding Technology,” Society of Manufacturing Engineers,1989
[16]R.Snoeys,J.Peter,A.Decnent, The Significance of Chip Thickness in Grinding, Annals of the CIRP, VOL 23/2,1974,P227
[17]M.C.Shaw, fundamentals of Gringing, New Developments in Grinding , 1972,P220
[18]黃淸忠, "氧化鋁與氮化硼砂輪磨削工件表面整合之比較," 國立台灣大學機械工程研究所碩士論文, 1990
[19]S. Malkin and N. H. Cook,” The Wear of Grinding Wheels” ,Trans of the ASME,Vol190.No4,1981
[20]郭耀文,”CNC立式銑削再生式顫振預測之研究”,碩士論文,台灣大學,2015.
[21]P. Kalyanasundaram, C. K. Mukhopadhyay, and S. V. Subba Rao, 2007, “Practical acoustic emission,” Indian Society for Non-Destructive Testing—National Certification Board Series, Alpha Science International Ltd
[22]庄司克雄,硏削加工学,養賢堂出版,2004。
[23]橋本文雄、朝倉健二,機械工作法Ⅱ,共立出版株式會社,2005。
[24]楊啓杰,製造程序,五南圖書出版社,1999。
[25]范光照,表面粗糙度及其量測, 2010。
[26]廖詮智,陳義哲,徐國峰,蘇俊揚,劉信煒,詹益銘,順逆銑對表面粗糙度之影響,東南技術學院機械工程系,民國九十年。
[27]陳崇彥,表面粗糙度量測,中華民國職業訓練研究發展中心,民國九十年。
[28]E. Brinksmeier, C. Heinzel, and M. Wittmann, "Friction, cooling and lubrication in grinding," CIRP Annals-Manufacturing Technology, vol. 48, pp. 581-598, 1999.
[29]Xingguo Fan, Zhaohui Deng, Experimental research on surface roughness of the profile grinding,Diamond & Abrasives Engineering, Vol.151, pp.50-52, 2006.
[30]S. Yossifon and C. Rubenstein, Wheel Wear Grinding Workpieces Exhibiting High Adhesion, Int.J.Mach.Tool Des.Res, Vol22,No3,1982.
[31]U.S. Patnaik Durgumahanti,Vijayender Singh,P. Venkateswara Rao, A new model for grinding force prediction and analysis, Internation Journal of Machine Tools and Manufacture,Vol.50,pp231-240,2010.
[32]Yang Z., Wu H., Yu Z., Huang Y., “A non-destructive surface burn detection method of ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process”, Meas. Sci. Technol., vol. 25, 2014.
[33]A. Hassui, A.E. Diniz, J.F.G. Oliveira, J. Felipe, J.J.F. Gomes, ''Experimental evaluation on grinding wheel wear through vibration and acoustic emission'', Wear, vol. 217, pp. 7-14, 15 April 1998.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top