跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鵬宇
研究生(外文):Peng-Yu Chen
論文名稱:二速三軸齒輪系之設計分析與最佳化
論文名稱(外文):Optimization and Design Approach to the Two-Speed Helical Gear Train with Three-Axis
指導教授:劉霆劉霆引用關係
指導教授(外文):Tyng Liu
口試委員:鄭榮和傅增棣
口試委員(外文):Jung-Ho ChengTseng-Ti Fu
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:125
中文關鍵詞:二速三軸齒輪系設計方法輕量化設計基因演算法分枝限界法
外文關鍵詞:Two-speed gear trainThree-axis layoutDesign methodLightweight designGenetic algorithmBranch and bound method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對二速三軸齒輪系架構為基礎,建立一套完整的設計流程與方法,期望透過齒輪箱內部構件設計搭配電腦輔助最佳化達成齒輪系輕量化之目的,並佐以軸承選用,使軸承能夠以現有的型錄做最適合之搭配。本論文首先由基礎力學理論發展齒輪系數學模型,並針對齒輪系內部構件列出完整的設計方法。接著以分支限界法為基礎,搭配遺傳基因演算法,推導出符合目標要求之最輕量化設計,並針對其整數齒數的選用、最佳嚙合齒數的調整、軸承規格之選用提出相關的流程與方法,並檢視其結果與一般傳統設計方法之優劣。之後藉由分析模擬討論不同齒輪系配置設定中的最佳設計佈局架構,再透過參數靈敏度分析得出各變數對目標函數的靈敏程度,並討論其對目標函數造成的影響,進一步供設計者作為設計時判斷取捨的依據。本研究藉由應用設計技巧與最佳化方法,建立一完整而系統化的齒輪系設計流程,將有助於車輛變速系統未來之發展與研究。

The purpose of this study was to develop a design approach of two-speed helical gear train system and to find out the suitable selection method of bearings which could fit the available bearing catalog. In this study, first, the total weight of gear train was optimized by genetic algorithm. According to the design requirement and structural features constraints, the mathematical model of optimization which took the basic design variables and total weight loss as the objective function was established. The branch and bound method was also applied to set up for the design processes of choosing integer number of teeth, satisfying the hunting ratio and fitting the bearing selection properly. Second, with altering the different gear train configuration settings, the better design could be determined as a conclusion. Further, each variable would be examined in sensitivity. Accordingly, the conclusion could provide the designer to make trade-offs based on the design process. By developing a complete design of lightweight optimization, the study findings may serve as development and further research of the vehicle transmission system.

口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xi
符號表 xiii
第一章 緒論 1
1-1 前言 1
1-2 齒輪系架構與文獻回顧 2
1-2-1 二速齒輪系架構 2
1-2-2 齒輪系設計與最佳化文獻回顧 4
1-3 研究動機與目的 5
1-4 論文架構 6
第二章 理論基礎 7
2-1 傳動系統座標系之定義 7
2-2 齒輪箱變速原理 8
2-2-1 齒輪箱動力傳遞 8
2-2-2 減速比規劃 9
2-3 螺旋齒輪 10
2-3-1 齒形術語 10
2-3-2 螺旋齒輪嚙合力學模型 12
2-3-3 齒輪過切限制 14
2-3-4 嚙合齒數規範 (Hunting tooth ratio) 15
2-3-5 齒輪彎矩強度設計 16
2-3-6 齒輪面壓強度設計 17
2-4 旋轉軸 19
2-4-1 軸負載 19
2-4-2 軸之剪力彎矩圖 21
2-4-3 齒環厚度 (Rim thickness) 23
2-4-4 軸直徑 24
2-5 軸承 25
2-5-1 軸承受力模型 25
2-5-2 軸承負荷壽命 28
2-5-3 額定可靠度 29
2-5-4 軸承負荷承載設計 30
第三章 二速三軸齒輪系設計 32
3-1 設計方法與步驟 32
3-2 設計目標與規格 33
3-3 齒輪系模型 34
3-3-1 基本假設 34
3-3-2 齒輪系設計暨軸承選用流程 35
3-3-3 傳動系統模型與佈局 36
3-4 螺旋齒輪對設計 38
3-4-1 設計要點 38
3-4-2 減速齒輪對設計 39
3-5 三軸佈局位置設計 47
3-6 三軸尺寸設計 51
3-6-1 設計要點 51
3-6-2 軸負載分析 51
3-6-3 剪力彎矩分析 56
3-6-4 旋轉軸設計 65
3-7 軸承選配 66
3-7-1 設計要點 66
3-7-2 軸承使用需求 67
3-7-3 軸承選用方法 68
3-8 小結 71
第四章 齒輪系最佳化設計 72
4-1 最佳化理論 72
4-1-1 方法架構 72
4-1-2 基因遺傳演算法 73
4-1-3 混和整數規劃 78
4-2 最佳化設計方法 83
4-2-1 最佳化設計目標 83
4-2-2 設計變數 84
4-2-3 目標函數 87
4-2-4 限制條件 89
4-2-5 設計流程 95
4-2-6 可行性設計 96
4-3 實例分析 99
4-3-1 最佳化結果 99
4-3-2 結果比較 102
4-4 小結 102
第五章 齒輪系配置設定與參數分析 103
5-1 齒輪系配置設定 103
5-1-1 佈局型式設定 103
5-1-2 換檔齒輪對配置設定 108
5-2 參數靈敏度分析 112
5-3 小結 119
第六章 結論 120
6-1 結論 120
6-2 未來展望 122
參考文獻 123


[1]O. Kayabasi and B. Ekici, "Automated design methodology for automobile side panel die using an effective optimization approach," Materials & Design, vol. 28, pp. 2665-2672, 2007.
[2]R. C. Sanghvi, A. S. Vashi, H. P. Patolia, and R. G. Jivani, "Multi-Objective Optimization of Two-Stage Helical Gear Train Using NSGA-II," Journal of Optimization, vol. 2014, pp. 1-8, 2014.
[3]H. Wei, F. Lingling, L. Xiohuai, W. Zongyin, and Z. Leisheng, "The Structural Optimization of Gearbox Based on Sequential Quadratic Programming Method," Intelligent Computation Technology and Automation, vol. 3, pp. 356-359, 2009.
[4]MathWorks. (7/17). MATLAB (R2016a ed.). Available: http://www.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com
[5]F. Y. Liao, Design and Evaluation of Transmission Gear Raito for Electric Bueses, Master thesis, Department of Mechanical Engineering, National Taiwan University, 2014.
[6]T. D. Gillespie, Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[7]S. S. Rao and H. R. Eslampour, "Multistage Multiobjective Optimization of Gearboxes," Journal of Mechanisms Transmissions and Automation in Design, vol. 108, p. 461, 1986.
[8]H. Zarefar and S. N. Muthukrishnan, "Computer-aided optimal design via modified adaptive random-search algorithm," Comput. Aided Des. 25, pp. 240–248, 1993.
[9]H. Wang and H. P. Wang, "Optimal engineering design of spur gear sets," Mech. Mach. Theory 29 pp. 1071–1080, 1994.
[10]D. F. Thompson, S. Gupta, and A. Shukla, "Tradeoff analysis in minimum volume design of multi-stage spur gear reduction units," Mech. Mach. Theory 35, pp. 609-627, 2000.
[11]V. N. Pi, "Optimal calculation of partial transmission ratios for four-step helical gearboxes with first and third step double gear-sets for minimal gearbox length," World Scientific and Engineering Academy and Society (WSEAS), 2008.
[12]N. Marjanovic, B. Isailovic, V. Marjanovic, Z. Milojevic, M. Blagojevic, and M. Bojic, "A practical approach to the optimization of gear trains with spur gears," Mechanism and Machine Theory, vol. 53, pp. 1-16, 2012.
[13]R. P. Tata, Principles and Use of Gears Shafts & Bearings Course #600. Morrisville, NC: PDH Enterprises, LLC, 2011.
[14]S. Prayoonrat and D. Walton, "Practical approach to optimum gear train design," Comput. Aided Des., pp. 83–92., 1988.
[15]S. Golabi, J. J. Fesharaki, and M. Yazdipoor, "Gear train optimization based on minimum volume/weight design," Mechanism and Machine Theory, vol. 73, pp. 197-217, 2014.
[16]T. Yokota, T. Taguchi, and M. Gen, "A solution method for optimal weight design problem of the gear using genetic algorithms," Computers & Industrial Engineering, vol. 35, pp. 523-526, 1998.
[17]L. P. Pomrehn and P. Y. Papalambros, "Discrete optimal design formulations with application to gear train design," J. Mech. Des. 117, pp. 419-424, 1995.
[18]C. T. Hyong and L. J. Sang, "A design method of gear trains using a genetic algorithm," Int. J. Precis. Eng. Manuf. 1, pp. 62-67, 2000.
[19]F. Mendi, T. Baskal, K. Boran, and F. E. Boran, "Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm," Expert Systems with Applications, vol. 37, pp. 8058-8064, Dec 2010.
[20]American Gear Manufacturers Association, "ANSI/AGMA 2001-D04," in Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, Alexandria, VA: American Gear Manufacturers Association, 2004.
[21]G. Lechner and H. Naunheimer, Automotive Transmission:Fundamentals Selection, Design and Application. New York, NY: Springer, 2011.
[22]L. Kohara Gear Industry Co., KHK3010 Gearguide. Saitama-ken, Japan: Kohara Gear Industry Co.,Ltd., 2009.
[23]S. P. Radzevich, Dudley''s Handbook of Practical Gear Design and Manufacture, 2nd ed. Boca Raton, FL: CRC Press, 2012.
[24]J. Erjavec, Techone: Manual Transmissions, 1st ed. Boston, MA: Cengage Learning, 2003.
[25]A. Ishibashi and S. Tanaka, "Effects of Hunting Gear Ratio Upon Surface Durability of Gear Teeth," ASME Paper 80--C2/DET--35, 1980.
[26]日本歯車工業会, "JGMA 401-01," in 正齒輪及螺旋齒輪的彎曲強度計算公式, 東京都: JGMA, 1974.
[27]Deutsches Institut für Normung, "DIN 3990," in Calculation of the load capacity of spur and helical gears, Tiergarten, Berlin: German Institute for Standardization, 1987.
[28]R. Tata, Mechanical Engineering Primer. Bloomington, IN: AuthorHouse, 2013.
[29]American Society of Mechanical Engineers, "Shafting design," American Society of Mechanical Engineers Mechanical Engineering magazine, vol. 49/no.5, pp. 474-476, 1927.
[30]R. G. Budymas and J. K. Nisbett, Shigley''s Mechanical Engineering Design, 9th ed. New York: McGraw-Hill, 2011.
[31]Timken, "Tapered Roller Bearing Catalog," 1st ed. North Canton, OH: The Timken Company, 2012.
[32]G. M. Maitra, Handbook of Gear Design, 2nd ed. Patel Nagar: Tata McGraw-Hill, 2001.
[33]日本歯車工業会, "JGMA 402-01," in 正齒輪及螺旋齒輪的面壓強度計算公式, 東京都: JGMA, 1975.
[34]S. Kullagerfabriken, "軸承綜合型錄," SKF, Sweden 1990.
[35]林聖泉, 工程分析與最佳化設計, 1st ed. 臺北: 東華出版社, 2011.
[36]A. D. Belegundu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, 2nd ed. Cambridge: Cambridge University Press, 2011.
[37]M. Vose, The Simple Genetic Algorithm: Foundations and Theory. Cambridge, MA: MIT Press, 1999.
[38]D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Norwell, MA: Kluwer Academic, 2002.
[39]Matlab. (6/19). How the Genetic Algorithm Works. Available: http://cn.mathworks.com/help/gads/how-the-genetic-algorithm-works.html#f6243
[40]A. H. Land and A. G. Doig, "An automatic method of solving discrete programming problems," Econometrica 28, pp. 497–520, 1960.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top