跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕綸
研究生(外文):I-Lun Chen
論文名稱:毫米尺寸流體系統應用於生質柴油之分離與純化
論文名稱(外文):Separation and Purification of Biodiesel by a Millifluidic System
指導教授:楊鏡堂楊鏡堂引用關係
指導教授(外文):Jing-Tang Yang
口試委員:周涵怡盧彥文廖英志楊瑞珍趙怡欽
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:毫米尺寸生質柴油分離與純化
外文關鍵詞:millifluidicbiodieselseparation and purification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用微流體系統之高表面積體積比特性,進行生質柴油之分離與純化,並與前段之轉酯化反應整合於同一晶片中,成為一完整的高通量生質柴油產製晶片。轉酯化反應生成之生質柴油通常含有過量甲醇,無法直接進行使用,需進行額外之分離與純化反應改善生質柴油品質。本研究設計水洗流道晶片及分離流道晶片以減少生質柴油中的甲醇含量,並利用重力靜置 (gravity settling) 之方式,使晶片出口處為高純度之生質柴油,即可直接進行使用。
實驗分析首先以轉酯化反應產物之上層生質柴油與純水分別注入水洗晶片中以進行水洗。尚未經過水洗之生質柴油甲醇含量經核磁共振儀測得平均值約為6 %,通入長度為500 mm之單注水口流道晶片,且純水流率設定為0.6 ml/min時可達到0.153 %之甲醇含量,達生質柴油之國家使用標準。若於流道中加入鯡魚骨狀結構,於純水流率0.6 ml/min時,甚至可達到0.091 %之甲醇含量。
分離晶片之設計理念為液珠流譜因重力作用將於流道內逐漸轉變為層流流譜。將生質柴油與甘油以1:1之比例混合均勻後立即通入此晶片中,於晶片上層出口可收集到純生質柴油而不含甘油,下層出口則含少量生質柴油,可藉由調整晶片之上下層流道高度以達生質柴油層與甘油層之完全分離目標。
本研究後續設計之整合晶片中,皆因轉酯化反應之中間產物產生水解現象迫使逆反應發生,使得轉化率大幅下降,因此本研究測試兩種方式減少中間產物含量分別為延長反應時間及提高環境溫度。在反應溫度55度且靜置時間1小時,則轉化率可達93 %,幾乎與未進行純化作業前之轉化率相差無異,證實加熱與靜置在連續式生質柴油產製晶片中為連結轉酯化反應和分離與純化系統的關鍵要素。

In this research, we applied the characteristic of high surface area to volume ratio in microfluidics, conducting separation and purification procedures in biodiesel production, and attempt to integrate transesterification onto one chip to realize a high-throughput completed biodiesel production chip. Fatty acid methyl ester (FAME) is not available immediately after transesterification as a result of containing excessive methanol. Methanol can be washed out from FAME by water-washing process, which is needed to be carried out to reduce the methanol content. In this research, we designed washing chip to decrease methanol content in biodiesel and separation chip to collect high purity biodiesel from upper outlet by gravity settling.
Methanol content was reduced from 6% before washing to less than 0.2% after washing by injecting biodiesel and water into 500 mm washing chip at 0.6 ml/min water flow rate, meeting FAME standard. Washing chips with staggered-herringbone structure can obtain even better results. We use passive structure of flow channels to separate the biodiesel and its by-product. Due to the effect of gravity, flow pattern in the channel changed from slug flow to somewhat like laminar flow gradually. Therefore, fluids from upper outlet of the chip are pure FAME, confirmed by no glycerol peaks in the NMR chart of upper-outlet fluids.
Hydrolysis of intermediates in transesterification caused reverse reaction during washing procedures, decaying conversion largely. In this research, we tried two different methods to reduce intermediates: longer residence time and higher environment temperature. Decent conversion of 93 % can be attainable at 55 ℃ and 1 h residence time. We proved heating and settlements are essential factor to connect transesterification with separation and purification in continuous biodiesel production.

誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖表目錄 vii
符號說明 xiv
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與願景 2
第二章 文獻回顧 4
2.1 微流體系統 (Microfluidics System) 4
2.2 微混合器 (Micromixer) 5
2.2.1 T/Y型微混合器 (T/Y mixers) 6
2.2.2 稀釋及梯度產生器 (Dilution and Gradient Generators) 7
2.2.3 混合器 (Homogenizers) 7
2.2.4 微混合器應用於轉酯化反應 11
2.2.4.1 微管反應器 (Microtube Reactors) 12
2.2.4.2 微結構反應器 (Microstructured Reactors) 12
2.2.4.3 薄膜反應器 (Membrane Microreactors) 14
2.2.4.4 液珠式微反應器 (Droplet-Based Microreactors) 14
2.2.4.5 微反應器內之轉酯化影響因素探討 16
2.3 生質柴油之分離與純化 18
2.3.1 分離 (Separation) 18
2.3.1.1 催化劑的影響 (Effects of Catalyst) 19
2.3.1.2 醇油比的影響 (Effects of Oil to Alcohol Ratio) 20
2.3.1.3 水及游離脂肪酸的影響 (Effects of Water and FFA) 20
2.3.2 純化 (Purification) 20
2.3.2.1 水洗 (Water Washing) 20
2.3.2.2 酸洗 (Acid Washing) 23
2.3.2.3 其他物質 (Other Substances) 23
2.3.3 微流體系統應用於分離與純化 24
2.4 生質柴油分離與純化之量化分析 25
2.5 文獻回顧分析 26
第三章 研究方法 27
3.1 設計理念 27
3.2 理論分析 29
3.2.1 流場統御方程式 29
3.2.2 分子擴散 (Diffusion) 33
3.3 微流體晶片之製作與實驗材料 34
3.3.1 母模刻製 35
3.3.2 晶片成形 42
3.3.3 化學藥品製備 45
3.4 實驗流程 47
3.4.1 實驗流程與儀器架設 47
3.4.2 實驗取樣 52
3.4.3 超導磁體核磁共振儀 53
3.4.4 量化分析 55
第四章 實驗結果與討論 57
4.1 水洗效能探討 (Water Washing) 57
4.1.1 雙注水口流道晶片 58
4.1.1.1 純水流率 59
4.1.1.2 流道長度 62
4.1.1.3 鯡魚骨狀溝槽 63
4.1.2 單注水口流道晶片 71
4.1.2.1 純水流率 71
4.1.2.2 流道長度 72
4.1.2.3 鯡魚骨狀溝槽 73
4.2 兩相分離 80
4.2.1 驗證與分析 81
4.3 整合晶片 (Integrated Chip) 84
4.3.1 轉酯化反應 (Transesterification) 84
4.3.2 酸洗效能探討 (Acid Washing) 86
4.3.3 雙純化注口整合晶片 86
4.3.4 單純化注口整合晶片 88
4.3.5 靜置效能探討 (Effects of Settlement) 90
4.3.6 溫度因素 (Effects of Temperature) 92
4.3.7 轉酯化產物水洗 93
第五章 結論與未來展望 95
5.1 結論 95
5.2 未來展望 97
5.3 甘梯圖 98
第六章 參考文獻 99

Amini, H., Lee, W., and Carlo, D. D., "Inertial microfluidic physics," Lab on a Chip, 2014, Vol. 14, pp. 2739-2761.
Atadashi, I. M., Aroua, M. K., and Aziz, A. A., "Biodiesel separation and purification: A review," Renewable Energy, 2011, Vol. 36, pp. 437-443.
Baroud, C. N., Gallaire, F., and Dangla, R., "Dynamics of microfluidic droplets," Lab on a Chip, 2010, Vol. 10, pp. 2032-2045.
Bhagat, A. A., Kuntaegowdanahalli, S. S., and Papautsky, I., "Continuous particle separation in spiral microchannels using dean flows and differential migration," Lab on a Chip, 2008, Vol. 8, pp. 1906-1914.
Bhagat, A. a. S., and Papautsky, I., "Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles," Journal of Micromechanics and Microengineering, 2008, Vol. 18, pp. 085005.
Boey, P. L., Gaanty, P. M., and Shafida, A., "Biodiesel from adsorbed waste oil on spent bleaching clay using cao as a heterogeneous catalyst," European Journal of Scientific Research, 2009, Vol. 1450-216X, pp. 347-57.
Bottausci, F., Cardonne, C., Meinhart, C., and Mezic, I., "An ultrashort mixing length micromixer: The shear superposition micromixer," Lab on a Chip, 2007, Vol. 7, pp. 396-398.
Chen, C. O. K., and Cho, C. C., "A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices," Chemical Engineering Science, 2008, Vol. 63, pp. 3081-3087.
Chongkhong, S., Tongurai, C., and Chetpattananondh, P., "Continuous esterification for biodiesel production from palm fatty acid distillate using economical process," Renewable Energy, 2009, Vol. 34, pp. 1059-63.
Cramer, C., Fischer, P., and Windhab, E. J., "Drop formation in a co-flowing ambient fluid," Chemical Engineering Science, 2004, Vol. 59, pp. 3045-3058.
Dertinger, S. K. W., Chiu, D. T., Jeon, N. L., and Whitesides, G. M., "Generation of gradients having complex shapes using microfluidic networks," Analytical Chemistry, 2001, Vol. 73, pp. 1240-1246.
Dube, M. A., Tremblay, A. Y., and Liu, J., "Biodiesel production using a membrane reactor," Bioresource Technology, 2007, Vol. 98, pp. 639-47.
Elizabeth, C., Russell, D., Douglas, D., Daniel, G., Richard, G., Brian, M., Martin, P., and James, P., Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem, 2008, Vol. 53, pp. 571-572.
Ferella, F., Mazziotti, G., De Michelis, I., Stanisci, V., and Veglio, F., "Optimization of the transesterification reaction in biodiesel production," Fuel, 2010, Vol. 89, pp. 36-42.
Flores, I. S., Godinho, M. S., De Oliveira, A. E., Alcantara, G. B., Monteiro, M. R., Menezes, S. M. C., and Lião, L. M., "Discrimination of biodiesel blends with 1h nmr spectroscopy and principal component analyses," Fuel, 2012, Vol. 99, pp. 40-44.
Foley, J. O., Mashadi-Hossein, A., Fu, E., Finlayson, B. A., and Yager, P., "Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel," Lab on a Chip, 2008, Vol. 8, pp. 557-564.
Freedman, B., Pryde, E. H., and Mounts, T. L., "Variables affecting the yields of fatty esters from transesterified vegetable oils," JAOCS, 1984, Vol. 61, pp. 1638-1643.
Glasgow, I., and Aubry, N., "Enhancement of microfluidic mixing using time pulsing," Lab on a Chip, 2003, Vol. 3, pp. 114-120.
Guan, G., Kusakabe, K., Moriyama, K., and Sakurai, N., "Transesterification of sunflower oil with methanol in a microtube reactor," Industrial & Engineering Chemistry Research, 2009, Vol. 48, pp. 1357-1363.
Guan, G., Sakurai, N., and Kusakabe, K., "Synthesis of biodiesel from sunflower oil at room temperature in the presence of various cosolvents," Chemical Engineering Journal, 2009, Vol. 146, pp. 302-306.
Guan, G., Teshima, M., Sato, C., Sung, M. S., Muhammad, F. I., Kusakabe, K., Ikeda, N., and Lin, T. J., "Two-phase flow behavior in microtube reactors during biodiesel production from waste cooking oil," AIChE Journal, 2009, Vol. 56, pp. 1383-1390.
Harding, K. G., Dennis, J. S., Von Blottnitz, H., and Harrison, S. T. L., "A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel," Journal of Cleaner Production, 2007, Vol. 16, pp. 1368-78.
He, W., Fang, Z., Ji, D., Zhang, K., and Guo, K., "Optimization of biodiesel production by continuous microflow system with online separation," Monatshefte für Chemie - Chemical Monthly, 2013, Vol. 145, pp. 223-227.
Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., and Kim, J., "Technologies for production of biodiesel focusing on green catalytic techniques: A review," Fuel Processing Technology, 2009, Vol. 90, pp. 1502-14.
Hideki, F., Akihiko, K., and Hideo, N., "Biodiesel fuel production by transesterification of oils: Review," Journal of Bioscience and Bioengineering, 2001, Vol. 92, pp. 405-16.
Hong, C. C., Choi, J. W., and Ahn, C. H., "A novel in-plane passive microfluidic mixer with modified tesla structures," Lab on a Chip, 2004, Vol. 4, pp. 109-113.
Hou, H. W., Bhattacharyya, R. P., Hung, D. T., and Han, J., "Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics," Lab on a Chip, 2015, Vol. 15, pp. 2297-2307.
Huang, C. J., Fang, W. F., Ke, M. S., Chou, H. Y., and Yang, J. T., "A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism," Lab on a Chip, 2014, Vol. 14, pp. 2057-2062.
Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesides, G., and Stone, H. A., "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels," Applied Physics Letters, 2000, Vol. 76, pp. 2376-2378.
Jachuck, R., Pherwani, G., and Gorton, S. M., "Green engineering: Continuous production of biodiesel using an alkaline catalyst in an intensified narrow channel reactor," Journal of Environmental Monitoring, 2009, Vol. 11, pp. 642-647.
Jin, C., Mcfaul, S. M., Duffy, S. P., Deng, X., Tavassoli, P., Black, P. C., and Ma, H., "Technologies for label-free separation of circulating tumor cells: From historical foundations to recent developments," Lab on a Chip, 2014, Vol. 14, pp. 32-44.
Kalu, E. E., Chen, K. S., and Gedris, T., "Continuous-flow biodiesel production using slit-channel reactors," Bioresource Technology, 2011, Vol. 102, pp. 4456-4461.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., "A serpentine laminating micromixer combining splitting/recombination and advection," Lab on a Chip, 2005, Vol. 5, pp. 739-747.
Lim, T. W., Son, Y., Jeong, Y. J., Yang, D. Y., Kong, H. J., Lee, K. S., and Kim, D. P., "Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length," Lab on a Chip, 2011, Vol. 11, pp. 100-103.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., "Passive mixing in a three-dimensional serpentine microchannel," Journal of Microelectromechanical Systems, 2000, Vol. 9, pp. 190-197.
Ma, F., and Hanna, M. A., "Biodiesel production: A review," Bioresource Technology, 1999, Vol. 70, pp. 1-15.
Marchetti, J. M., and Errazu, A. F., "Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides," Biomass and Bioenergy, 2008, Vol. 32, pp. 892-5.
Martínez Arias, E. L., Fazzio Martins, P., Jardini Munhoz, A. L., Gutierrez-Rivera, L., and Maciel Filho, R., "Continuous synthesis and in situ monitoring of biodiesel production in different microfluidic devices," Industrial & Engineering Chemistry Research, 2012, Vol. 51, pp. 10755-10767.
Masato, K., Takekazu, K., Masahiko, T., Yoshikazu, S., Shinya, Y., and Jusuke, H., "Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production," Fuel, 2008, Vol. 87, pp. 2798-806.
Meher, L., Dharmagadda, V., and Naik, S., "Optimization of alkali-catalyzed transesterification of pongamia pinnata oil for production of biodiesel," Bioresource Technology, 2006, Vol. 97, pp. 1392-7.
Meher, L. C., Vidya Sagar, D., and Naik, S. N., "Technical aspects of biodiesel production by transesterification: A review," Renewable and Sustainable Energy Reviews, 2006, Vol. 10(3), pp. 248-68.
Haq, N. B., Mohammad, A. S., Mohammad, Q., and Ata, U. R., "Biodiesel production from waste tallow," Fuel, 2008, Vol. 87, pp. 2961-6.
Nestor, J. U. S., Richard, V., and Dimitris, A., "Biodiesel synthesis via homogeneous lewis acid-catalyzed transesterification," Fuel, 2009, Vol. 88, pp. 560-5.
Nguyen, N. T., and Wu, Z., "Micromixers—a review," Journal of Micromechanics and Microengineering, 2005, Vol. 15, pp. R1-R16.
Nunes, J. K., Tsai, S. S., Wan, J., and Stone, H. A., "Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis," Journal of Physics D: Applied Physics, 2013, Vol. 46, pp. 114002-114021.
Park, S. J., Kim, J. K., Park, J., Chung, S., Chung, C., and Chang, J. K., "Rapid three-dimensional passive rotation micromixer using the breakup process," Journal of Micromechanics and Microengineering, 2004, Vol. 14, pp. 6-14.
Praveen, R. M., Scott, C. B., and Noureddini, H., "Improved conversion of plant oils and animal fats into biodiesel and co-product," Bioresource Technology, 1996, Vol. 56, pp. 19-24.
Ren, Y., Liu, Z., and Shum, H. C., "Breakup dynamics and dripping-to-jetting transition in a newtonian/shear-thinning multiphase microsystem," Lab on a Chip, 2015, Vol. 15, pp. 121-134.
Salic, A., and Zelic, B., "Microreactors - portable factories for biodiesel fuel production," goriva i maziva, 2011, Vol. 50, pp. 85-110.
Scheiff, F., Mendorf, M., Agar, D., Reis, N., and Mackley, M., "The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream," Lab on a Chip, 2011, Vol. 11, pp. 1022-9.
Schurer, J., Thiele, R., Wiborg, O., Ziogas, A., and Kolb, G., "Synthesis of biodiesel in microstructured reactors under supercritical reaction condition," Chemical Engineering Journal, 2014, Vol. 37, pp. 541-546.
Sharma, Y. C., Singh, B., and Upadhyay, S. N., "Advancements in development and characterization of biodiesel: A review," Fuel, 2008, Vol. 8, pp. 2355-73.
Sharma, Y. C., and Singh, B., "Development of biodiesel: Current scenario," Renewable and Sustainable Energy Reviews, 2009, Vol. 13, pp. 1646-51.
Shi, Y., Tang, G. H., and Xia, H. H., "Lattice boltzmann simulation of droplet formation in t-junction and flow focusing devices," Computers & Fluids, 2014, Vol. 90, pp. 155-163.
Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., "Chaotic mixer for microchannels," Science, 2002, Vol. 295, pp. 647-651.
Stroock, A. D., and Whitesides, G. M., "Controlling flows in microchannels with patterned surface charge and topography," Accounts of Chemical Research, 2003, Vol. 36, pp. 597-604.
Sun, J., Ju, J., Ji, L., Zhang, L., and Xu, N., "Synthesis of biodiesel in capillary microreactors," Industrial & Engineering Chemistry Research, 2008, Vol. 47, pp. 1398-1403.
Sun, P., Sun, J., Yao, J., Zhang, L., and Xu, N., "Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions," Chemical Engineering Journal, 2010, Vol. 162, pp. 364-370.
Sun, P., Wang, B., Yao, J., Zhang, L., and Xu, N., "Fast synthesis of biodiesel at high throughput in microstructured reactors," Industrial & Engineering Chemistry Research, 2010, Vol. 49, pp. 1259-1264.
Tung, K. Y., Li, C. C., and Yang, J. T., "Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer," Microfluidics and Nanofluidics, 2009, Vol. 7, pp. 545-557.
Wang, L., and Yang, J. T., "An overlapping crisscross micromixer using chaotic mixing principles," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 2684-2691.
Wang, L., Yang, J. T., and Lyu, P. C., "An overlapping crisscross micromixer," Chemical Engineering Science, 2007, Vol. 62, pp. 711-720.
Wen, Z., Yu, X., Tu, S. T., Yan, J., and Dahlquist, E., "Intensification of biodiesel synthesis using zigzag micro-channel reactors," Bioresource Technology, 2009, Vol. 100, pp. 3054-3060.
Whitesides, G. M., "The origins and the future of microfluidics," Nature, 2006, Vol. 442, pp. 368-373.
Xia, H. M., Wan, S. Y., Shu, C., and Chew, Y. T., "Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low reynolds numbers," Lab on a Chip, 2005, Vol. 5, pp. 748-755.
Xie, T., Zhang, L., and Xu, N., "Biodiesel synthesis in microreactors," Green Processing and Synthesis, 2012, Vol. 1, pp. 61-70.
Yang, J. T., and Lin, K. W., "Mixing and separation of two-fluid flow in a micro planar serpentine channel," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 2439-2448.
Yeh, S. I., Fang, W. F., Sheen, H. J., and Yang, J. T., "Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface," Microfluidics and Nanofluidics, 2012, Vol. 14, pp. 785-795.
Yomi, W., Yuji, S., Akio, S., Hideo, N., Hideki, F., and Yoshio, T., "Continuous production of biodiesel fuel from vegetable oil using immobilized candida antarctica lipase," JAOCS, 2000, Vol. 77, pp. 4.
Yu, X., Wen, Z., Lin, Y., Tu, S. T., Wang, Z., and Yan, J., "Intensification of biodiesel synthesis using metal foam reactors," Fuel, 2010, Vol. 89, pp. 3450-3456.
Liu, K., Zhao, L. B., Zeng, Q., Guo, Z. X., Liu, J., and Zhao, X. Z., "Injection angle dependence in flow focusing based droplet formation," IEEE, 2007, pp. 1121-1124.
Roszkowski, K., and Choi, S., "Continuous biodiesel synthesis in a microfluidic microsystem," μTAS, 2015, pp. 2047-2049.
Suprihastuti, S. R., and Aswati, M., "Optimization of biodiesel washing by water extraction," WCECS, 2007, San Francisco, USA.
Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., and Knothe, G., "Biodiesel production technology," National Renewable Energy Laboratory, SR-510-36244, pp. 66-9.
Sun, P. Y., 2010, "Preparation and purifi cation of biodiesel in microstructured reactors," Doctor Thesis, Nanjing University of Technology.
Tesfai, J., 2011, "Continuous, passive liquid-liquid extraction and emulsion separation within microfluidic and millifluidic devices," Master Thesis, Bucknell University.
陳國祥,2014,液珠式微流體晶片之生質柴油產製,國立國立臺灣大學機械工程學系碩士論文。
黃彥誠,2015,毫米尺寸同向型液珠流體系統之高通量轉酯化反應,國立國立臺灣大學機械工程學系碩士論文。
Reich, H. J., extracted on 10 October 2015, "Proton chemical shifts," available at: http://www.chem.wisc.edu/areas/reich/chem605/index.htm
Rick, D. T., extracted on 13 August 2015, "Make biodiesel," available at: http://www.make-biodiesel.org/Water-Washing/water-washing-bio.html
錢培宜, extracted on 10 October 2015, "Nmr基礎原理介紹i," available at: http://web.svdcc.fju.edu.tw/~bio/excel/content05/html/50.htm#一.前言

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top