跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李謙
研究生(外文):Chien Lee
論文名稱:迴路式毛細管熱對流聚合酶連鎖反應平台的開發與研究
論文名稱(外文):The Development of a Capillary Loop Convective Polymerase Chain Reaction Platform
指導教授:陳炳煇陳炳煇引用關係
指導教授(外文):Ping-Hei Chen
口試委員:李達生許進吉
口試委員(外文):Da-Sheng LeeChin-Chi Hsu
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:熱對流聚合酶連鎖反應單一溫控定量測試
外文關鍵詞:ConvectivePolymerase Chain Reactionsingle temperature controllerQuantitative test
相關次數:
  • 被引用被引用:4
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
迴路式熱對流聚合酶連鎖反應(Capillary Loop Convective Polymerase Chain Reaction,CLCPCR)為一種新式核酸擴增技術,僅以單一底部加熱源使迴路式毛細管內部試劑產生穩定的循環流動,無須繁複的升降溫過程即能使核酸在PCR所需之溫度間不斷增生。本論文目的為針對迴路式毛細管聚合酶連鎖反應開發一簡單穩定之擴增平台,驗證此系統之可行性並蒐集實驗相關參數。
實驗初期須確認管內熱流情形合乎聚合酶連鎖反應之需求。本論文藉由將微小粒子加入迴路式毛細管中觀察流場運動情形,確認管內流體在底部單一加熱情況下有循環流動的現象發生後,再量測管內流體溫度,在環境溫度25~26℃以及底部加熱溫度為135℃的情況下,管內流體之最高溫及最低溫皆符合聚合酶連鎖反應之需求。
本實驗接著建立一簡單CLCPCR定量檢測平台,並先進行擴增定性測試。為增加本系統擴增之穩定性,我們找尋並設計出適合迴路式毛細管擴增環境之引子對,並測試其穩定性及靈敏度,經實驗證明,本系統在高(6×106copies/tube)、中(6×104copies/tube)以及低(6×102copies/tube)三種初始模板濃度下皆能在25分鐘內擴增成功。定性測試成功後進而進行CLCPCR定量測試,確認光學機構可以成功偵測到螢光強度之變化,再使用影像分析軟體將拍攝到之PCR過程螢光變化趨勢數值化,並定義一Ct值繪製對應的標準曲線。由結果顯示標準曲線相當趨於線性,因此證明了此系統之可行性及發展性。
CLCPCR平台相較於傳統PCR平台縮短了擴增過程的時間,且單一溫控系統也降低了機台製造成本,未來若能將整體系統設計最佳化提高檢測精準度,相信必能投入市場為台灣的醫療產業盡一份心力。


Capillary loop convective polymerase chain reaction (CLCPCR) is a new DNA amplification technology. It can replicate DNA simply by using a single temperature controller to heat the bottom of the loop solely to generate stable circulation. The purpose of this thesis is to develop a solid amplified platform to examine the possibility of CLCPCR and collect parameters of the experiments.
The initial stage of the experiments must ensure whether the temperature in the loops meets the requirement of the PCR. In this thesis, first, the researcher added tiny particles in the loops to observe the movement so as to make sure circular phenomena occurred when heating the bottom of the loops solely. Then, the researcher measured the fluid temperature and found that the maximum and minimum fluid temperature in the loops meet the PCR requirements in the condition of 25~26℃ surrounding temperature with 135℃ bottom heated temperature.
For next step, we built a detective CLCPCR platform and conducted qualitative test. In order to increase the stability and sensitivity of the platform, we sought and designed the appropriate CLCPCR primer. The experiments have proved that the platform can amplify in 25 minutes in the following three initial copies 6×106copies/tube (high),6×104copies/tube (medium) and 6×102copies/tube (low). After qualitative test, the researcher then carried out the quantitative test to ensure optical mechanism can detect the fluorescent varieties. The researcher then uses the image analysis software to digitalize the recorded fluorescent varieties and define the Ct value and then draw the corresponded standard curve. The results indicated that the standard curve tend to be linear so it proved the feasibility and expansibility of the platform.
Compared to traditional PCR platform, the CLCPCR platform can both shorten the amplified time and reduce the cost of manufacturing machines because of the single temperature controller. As a result, if the platform can be optimized to enhance the detective accuracy in the future, it can definitely contribute to the Taiwanese medical device industry and bring commercial value into the market.


口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 IV
符號說明 VI
目錄 VII
附圖目錄 X
附表目錄 XII
第一章 緒論 1
1.1前言 1
1.2 研究目的與動機 2
1.3 文獻回顧 3
1.4 論文架構 10
第二章 研究原理與方法 23
2.1聚合酶連鎖反應 23
2.1.1 基本原理介紹 23
2.1.2 影響聚合酶連鎖反應之因素 24
2.2 即時定量聚合酶連鎖反應 26
2.2.1 基本原理介紹 26
2.2.2 Ct值介紹與選擇 27
2.3 熱對流聚合酶連鎖反應 28
2.3.1 基本原理介紹 28
2.3.3 迴路式毛細管熱對流聚合酶連鎖反應原理介紹 29
2.4 數據分析 30
第三章 實驗設備 35
3.1 實驗試劑與化學藥品 35
3.1.1 聚合酶連鎖反應之試劑 35
3.1.2 凝膠電泳分析的化學藥品 37
3.2 實驗儀器 38
3.2.1 溫度量測系統 38
3.2.3 凝膠電泳分析系統 39
3.2.4 LightCycler 2.0 檢測系統 39
3.3 迴路式毛細管系統之實驗設備 40
3.3.1 試劑容器 40
3.3.2 加熱與溫控系統 40
3.3.3 光學檢測系統 41
3.4 實驗步驟 42
3.4.1 迴路式毛細管qPCR平台實驗步驟 42
第四章 實驗結果 53
4.1 玻璃材質迴路式毛細管溫度量測及流場觀測結果 53
4.1.1玻璃迴路式毛細管流場觀測結果 53
4.1.2玻璃迴路式毛細管溫度量測結果 54
4.2 玻璃材質迴路式毛細管聚合酶連鎖反應定性測試 55
4.2.1 引子融合溫度對PCR擴增結果之影響 55
4.2.2 迴路式毛細管PCR系統之靈敏度測試 56
4.3 玻璃材質迴路式毛細管聚合酶連鎖反應定量測試 56
4.3.1 光學系統之收光測試結果 56
4.3.2 PCR定量結果之螢光擷取方法與亮度量測 57
4.3.3 數據處理方法與PCR定量實驗結果 58
第五章 結論與未來展望 70
5.1 結論 70
5.1.1 迴路式毛細管內部流場及溫度檢測結果 70
5.1.2 核酸擴增結果 70
5.1.3 定量實驗結果 71
參考文獻 73




[1]謝一帆,單一溫控熱對流聚合酶連鎖反應系統之開發與研究,碩士,機械程學研究所,國立國立臺灣大學,台北市,2007。
[2]周文彬,一種新式核酸擴增系統之研究-毛細管熱對流聚合酶連鎖反應,博士,機械工程學研究所,國立國立臺灣大學,台北市,2011。
[3]Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G.T., Erlich, H. A., and Arnheim, N., "Enzymatic amplification of β-Globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia," Science, vol. 230, pp.1350-1354, 1985.
[4]Higuchi, R., Dollinger, G., Walsh, P. S., and Griffith, R., "Simultaneous amplification and detection of specific DNA-sequences," Bio-Technology, vol. 10, pp. 413-417, 1992.
[5]Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P., "Continuous fluorescence monitoring of rapid cycle DNA amplification," Biotechniques, vol. 22, pp. 130-138, 1997.
[6]Wittwer, C. T., Ririe, K. M., Andrew, R. V., David, D. A., Gundry, R. A., and Balis, U. J., "The LightCycler(TM) a microvolume multisample fluorimeter with rapid temperature control," Biotechniques, vol. 22, pp. 176-181, 1997.
[7]Lyon, E.,and Wittwer, C. T., " LightCycler technology in molecular diagnostics," Journal of Molecular Diagnostics, vol. 11, pp. 93-101, 2009.
[8]Krishnan, M., Ugaz, V. M., and Burns, M. A., "PCR in a Rayleigh-Benard convection cell," Science, vol. 298, pp. 793-793, 2002.
[9]Ugaz, V. M. and Krishnan, M., "Novel convective flow based approaches for high-throughput PCR thermocycling," Journal of Laboratory Automation, vol. 9, pp. 318-323, 2004.
[10]Krishnan, N., Agrawal, N., Burns, M. A., and Ugaz, V. M., "Reactions and fluidics in miniaturized natural convection systems," Analytical Chemistry, vol. 76, pp. 6254-6265, 2004.
[11]Chen, Z., Qian, S., Abrams, W. R., Daniel, Malamud, D., and Bau, H. H., "Thermosiphon-based PCR reactor: experiment and modeling," Analytical Chemistry, vol. 76, pp. 3707-3715, 2004.
[12] Wheeler, E. K., Benett, W., Stratton, P., Richards, J., Christian, A., and Chen, A., "Convectively driven polymerase chain reaction thermal cycler," Analytical Chemistry, vol. 76, pp. 4011-4016, 2004.
[13]Hennig, M. and Braun, D., "Convective polymerase chain reaction around micro immersion heater," Applied Physics Letters, vol. 87, p. 183901, 2005.
[14]Tsai, Y. L., Wang, H. T. T., Chang, H. F. G., Tsai, C. F., Lin, C. K., Teng, P. H., Su, C., Jeng, C. C., and Lee, P. Y., "Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection," Plos One, vol. 7, 2012.
[15]Tsai, Y. L., Lin, Y. C., Chou, P. H., Teng, P. H., and Lee, P. Y., "Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions," Journal of Virological Methods, vol. 181, pp. 134-137, 2012.
[16]Chang, H. F. G., Tsai, Y. L., Tsai, C. F., Lin, C. K., Lee, P. Y., Teng, P. H., Su, C., and Jeng, C. C., "A thermally baffled device for highly stabilized convective PCR," Biotechnology Journal, vol. 7, pp. 662-666, 2012.
[17]Hsieh, Y. F., Lee, D. S., Chen, P. H., Liao, S. K., Yeh, S. H., Chen, P. J., Yang, A. S., “A Real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer.” Sensors and Actuators B-Chemical, vol. 183, pp. 434-440, 2013.
[18]Chung, K. H., Park, S. H., and Choi, Y. H., "A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect, " Lab on a Chip, vol. 101, pp.202–210, 2010.
[19] Chung, K. H., Choi, Y. H., Kim, B. K., and Sung, G.Y., "Fast PCR utilizing buoyant convection in a disposable chip," IEEE 24th International Conference, pp. 865–868, 2011.
[20] Chung, K. H., Choi, Y. H., Choi H. K., Kim, J. T., Yu, Y. J., and Choi, J. S., "Convection-based realtime polymerase chain reaction (PCR) utilizing transparent graphene heaters," IEEE SENSORS Proceedings, pp. 1006-1009, 2014.
[21] Chien, A., Edgar, D. B., and Trela, J. M., "Deoxyribonucleic acid polymerase from the extreme thermophile thermus aquaticus," Journal of Bacteriology, vol. 127, pp. 1550-1557, 1976.
[22] 楊宏政,不同的光學機制對即時定量聚合酶連鎖反應檢測之影響,碩士,機械工程學研究所,國立台灣大學,台北市,2014。
[23] 張玉瓏、徐乃芝、許素菁著,生物技術,新文京開發出版股份有限公司,台北,2008。
[24] http://www.invitrogen.com
[25] http://www.originlab.com
[26] Kellogg, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P. D., and Chenchik, A., "TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase," Biotechniques, vol.16, pp.1134-1137, 1994.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top