(100.26.179.251) 您好!臺灣時間:2021/04/21 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林凱偉
研究生(外文):Kai-Wei Lin
論文名稱:冶金及製程參數對於縮墨鑄鐵生產之影響研究
論文名稱(外文):Study on the Effects of Metallurgical and Processing Parameters on the Production of Compacted Graphite Cast Iron
指導教授:潘永寧
指導教授(外文):Yung-Ning Pan
口試委員:許正勳楊智富
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:縮墨鑄鐵縮化率縮化劑二次接種碳化物
外文關鍵詞:Compacted graphite cast ironVermicularityCompactizerLate inculationCarbide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬探討:1. 縮化劑種類,2. 縮化劑添加量,3. 縮化處理後之熔液持溫時間,4. 縮化處理後之熔液持溫溫度,5. 進行二次接種與否,等冶金及製程參數對於縮狀石墨鑄鐵之顯微組織以及機械性質的影響,以期獲得生產縮墨鑄鐵之較佳製程條件。
研究結果顯示,在固定碳當量4.2%,接種劑添加量0.3%之處理條件下,對於25mm Y-block而言,Mg-RE系縮化劑在添加量0.6wt%,且未進行二次接種之處理條件下,可獲得縮化率約80~90%、無碳化物析出之縮墨鑄件;在相同處理條件下,進行二次接種處理則會使球化率提高、縮化率降低,而僅能得到縮化率約50~70%且無碳化物析出之縮墨鑄件。此外,在縮化接種處理後13~20分鐘Mg-RE系縮化劑會有明顯的退化現象,而導致片狀石墨的生成,但降低持溫度則有助於減緩此退化現象。另,對於已經退化並生成片狀石墨的鑄件而言,即使進行二次接種亦無法重新獲得縮狀/球狀石墨。
當採用RE系縮化劑時,在固定碳當量4.2%,接種劑添加量0.3%之處理條件下,對於25mm Y-block而言,在縮化劑添加量0.8~1.2wt%,且未進行二次接種之處理條件下,可獲得縮化率約40~70%之縮墨鑄件,但會有碳化物晶出;在相同處理條件下,實施二次接種處理雖然會使球化率提高,但可以完全消除碳化物,並得到縮化率約10~60%且無碳化物析出之縮墨鑄件。另,稀土元素由於不易揮發,因此在縮化接種處理後20~27分鐘才會發生明顯的退化。
對於最佳製程條件而言,Mg-RE系縮化劑在縮化劑添加量0.6%、接種劑添加量0.3%,且未進行二次接種之處理條件下,於縮化接種處理之後13分鐘可獲得縮化率達80~90%且無碳化物析出之縮墨鑄件。另一方面,RE系縮化劑則在縮化劑添加量0.8%或1.0%,接種劑添加量0.3%,且進行二次接種之處理條件下,於縮化接種處理後20分鐘可獲得縮化率約60%且無碳化物析出之縮墨鑄件。


The primary purpose of this research is to establish the optimal conditions for the production of compacted graphite cast iron by investigating the effects of metallurgical and processing parameters (types of compactizer, addition amounts of compactizer, holding time, holding temperature and late inoculation) on graphite morphology and mechanical properties of compacted graphite cast iron.
The results show that, for a fixed C.E. value of 4.2% and addition amounts of 0.3% inoculant and 0.6% Mg-RE compactizer without late inculation, a carbide-free compacted graphite cast iron with 80~90% vermicularity can be obtained. For the same treatment condition, again a carbide-free compacted graphite cast iron but with lower vermicularity about 50~70% and was attained by conducting late inculation. In addition, flake graphite will generate when Mg-RE compactizer decayed at about 13~20 minutes after compactization and inoculation treatment, but lower holding temperature can slow down this phenomenon. Besides, compacted and spheroidal graphite cast iron can’t be reach by conducting late inculation after flake graphite generate.
For using RE alloys as the compactizer, a fixed C.E. value of 4.2% and addition amounts of 0.3% inoculant and 0.6% RE compactizer without late inculation, compacted graphite cast iron with 40~70% vermicularity but with carbide can be obtained. For the same treatment condition, carbide can be eliminates by conducting late inculation and a carbide-free compacted graphite cast iron with lower vermicularity about 10~60% can be attained. RE alloys will decay at about 20~27 minutes after compactization and inoculation treatment due to less volatile.
In terms of the optimal conditions for the production of compacted graphite cast iron, addition amounts of 0.3% inoculant and 0.6% Mg-RE compactizer without late inculation, a carbide-free compacted graphite cast iron with about 80~90% vermicularity can be obtained at about 13 minutes after compactization and inoculation treatment. In the other hand, addition amounts of 0.3% inoculant and 0.8%~1.0% RE compactizer with late inculation, a carbide-free compacted graphite cast iron with 60% vermicularity can be obtained at about 20 minutes after compactization and inoculation treatment.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
LIST OF TABLES viii
LIST OF FIGURES x
第 1 章 緒 論 1
第 2 章 文獻探討 3
2.1 鑄鐵的凝固現象 3
2.1.1 穩定系統與準穩定系統 3
2.1.2 冷卻曲線 4
2.2 石墨之形態 5
2.3 縮狀石墨鑄鐵 6
2.3.1 顯微組織 7
2.3.2 機械性質 7
2.3.3 縮狀石墨之判定 8
2.3.4 縮化率的判定 8
2.3.5 縮墨鑄鐵的製程方法 9
2.4 球化元素之影響 10
2.4.1 鎂(Mg) 10
2.4.2 鈰(Ce) 11
2.4.3 鑭(La) 11
2.4.4 鈣(Ca) 12
2.5 其他冶金及製程參數影響 12
2.5.1 碳與矽(C&Si) 12
2.5.2 製程溫度 12
2.6 碳化物比例之計算 13
2.7 相關規範 13
第 3 章 研究方法與步驟 27
3.1 研究目的 27
3.2 實驗架構 27
3.3 合金設計 27
3.4 鑄造程序 28
3.4.1 配料 28
3.4.2 縮化、接種與二次接種處理 28
3.4.3 澆鑄流程 28
3.5 分析試片取樣 29
3.6 機械性質分析 29
3.6.1 拉伸試驗 29
3.6.2 硬度試驗 29
3.7 金相與顯微組織分析 29
3.8 縮化率的判定方法 30
3.9 A、D型石墨比例的計算方法 30
3.10 碳化物比例計算 30
3.11 試片編號 31
第 4 章 結果與討論 40
4.1 Mg-RE系縮化劑之實驗結果 40
4.1.1 添加0.4wt%Mg-RE系縮化劑 40
4.1.2 添加0.6wt%Mg-RE系縮化劑 42
4.1.3 小結 44
4.2 RE系縮化劑之實驗結果 44
4.2.1 添加0.4wt%RE系縮化劑 44
4.2.2 添加0.6wt%RE系縮化劑 46
4.2.3 分別添加0.8、1.0、1.2wt%RE縮化劑 48
4.3 Mg-RE系縮化劑與RE系縮化劑之比較 50
第 5 章 結論 84
參考文獻 92



[ 1 ] S. Dawson and T. Schroeder, “Practical Applications for Compacted Graphite Iron”, AFS Trans., Vol. 112, pp. 813-821, 2004
[ 2 ] C. R Loper, M. J. Lalich and H. K. Park, Microstructure-Mechanical Property Relationship in Compacted (Vermicular) Graphite Cast Iron, ”The Proceedings to The 46th International Foundry CoPngress, Madrid, Spain, 1979.
[ 3 ] N. N. Aleksandrov, et al., “Production and Properties of High Duty Iron with Compacted Graphite”, Russian Castings Production, pp. 319-321, 1976.
[ 4 ] P. C. Liu, C. R. Loper, Jr., T. Kimura and E. N. Pan, “Observations on the Graphite Cast Iron, ” AFS Trans., Vol. 89, pp. 65-78, 1981.
[ 5 ] R. C. Voigt and S. D. Holmgren, “Crack Initiation and Propagation In Gray and Compacted Graphite (CG) Cast Irons, ” AFS Trans., Vol. 98, pp.213-225, 1990.
[ 6 ] J. D. Altstetter and R. M. Nowicki, “Compacted Graphite Iron: Its Properties and Automotive Applications,” AFS Trans., Vol. 90, pp. 959-970, 1982.
[ 7 ] E. N. Pan and C. R. Loper Jr., “縮狀石墨鑄鐵—石墨顯微組織、凝固形成理論、生產方法、品質管制、性能及其應用發展(一) ”,鑄工36期, pp. 16-25, 1983。
[ 8 ] E. N. Pan and C. R. Loper Jr., “縮狀石墨鑄鐵—石墨顯微組織、凝固形成理論、生產方法、品質管制、性能及其應用發展(二) ”,鑄工37期, pp. 15-36, 1983。
[ 9 ] Y. Gan and C. R. Loper Jr., “Observation on the Formation of Graphite in the Compacted and Spheroidal Graphite Cast Iron,” AFS Trans., Vol. 90, pp. 781-788, 1982.
[10] E. N. Pan and C. R. Loper, Jr., “A Study of the Production of Compacted /Vermicular Graphite Cast Irons in Thin Section,” AFS Trans., Vol. 93, pp. 523-532, 1985.
[ 11 ] “球墨鑄鐵手冊”,中華民國鑄造學會,1992。
[ 12 ] 財團法人中鋼集團教育基金會,鋼鐵材料設計與應用,中國礦冶工程學會,民國85年9月(1996)。
[ 13 ] 潘永寧,“鑄鐵的石墨形狀及成形理論之探討(一)”,鑄工44期, pp. 28-45, 1985。
[ 14 ] 潘永寧,“鑄鐵的石墨形狀及成形理論之探討(二)”,鑄工46期, pp. 9-24, 1985。
[ 15 ] R. W. Heine, “Carbon, Silicon, Carbon Equivalent, Solidification and Thermal Analysis Relationship in Gray and Ductile Cast Iron, ” AFS Trans., Vol. 81, pp. 462, 1973.
[ 16 ] R. W. Heine, “Liquidus and Eutectic Temperatures and Solidification of White Cast Irons, ” AFS Trans., Vol. 85, pp. 537-544, 1977.
[ 17 ] D. M. Stefanescu, F. Martinez and I. G. Chen, “Solidification Behavior of Hypoeutectic and Eutectic Compacted Graphite cast Iron. Chilling Tendency And Eutectic Cells,” AFS Trans., Vol. 91, pp. 205-216, 1983.
[ 18 ] ASM Metals Hamdbook, 9th ed., Vol. 3, 1989.
[ 19 ] ASTM A247, “Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings,” ASTM International
[ 20 ] 何祚芝,“蠕墨鑄鐵理論與實踐”,機械工業出版社,1985
[ 21 ] 張忠仇,李克銳,吳建基,“關於蠕墨鑄鐵標準的幾點看法”,鄭州機械研究所,2006。
[ 22 ] 郝石堅,“現代鑄鐵學”,冶金工業出版社,2004。
[ 23 ] 張忠仇,“計算方法不同引起的蠕化率的差別”,鄭州機械研究所,1987。
[ 24 ] H. Morrogh, “Anew Engineering Materials Production of Nodular Graphite Structures in grey cast irons,” AASM, pp. 72-90, 1948.
[ 25 ] H. Morrogh and W. J. Williams, “The Production of Nodular Graphite Structure in Cast Irons,” Journal of Iron and Steel Inst., pp. 306-324, 1948.
[ 26 ] J. W. Estes and R. Schneidewind, “New High Strength Cast Iron Produced by Injection Methods,” AFS Trans., Vol. 63, pp. 541-552,1955.
[ 27 ] S. Dawson, “Process Control for the Production of Compact Graphite Iron,” the 106th AFS Casting Congress Kansas City 4-7, 2002.
[ 28 ] R. D. Schelleng, “Effect of Certain Elements on the Form of Graphite in Cast Irons,” AFS Trans., Vol. 74, pp. 700-708, 1966.
[ 29 ] Nobuhisa Tsutsumi, and Masata Imamura, “Production of CV Cast Iron by Gas Injection,” Waseda Univ. Japan, 1980.
[ 30 ] Dawson, J. V. ;Smith, L. W. L. and Bach, B. B. : BCIRA J. of Research and Development, Vol. 4, pp. 540, June 1953.
[ 31 ] D. M. Stefanescu, R. C. Voigt and C. R. Loper, Jr., “The importance of the Lanthanum/Rare Earth Ratio in the Production of Compacted Graphite Cast Irons,” AFS Trans., Vol. 89, pp. 119-130, 1981.
[ 32 ] T. Kusakawa, “Role of Calcium in the Production of CC Iron,” 27th International Casting Congress, Vienna, Austria, 1961.
[ 33 ] 歐陽耀傳、邱春豐,“鑄鐵中石墨組織與機械性能之關係”,鑄工29期, pp.45~59, 1985.
[ 34 ] Foundrymen’s Guide to Ductile Iron Microstructures, an American Foundrymen’s Society Publication.
[ 35 ] ASTM A247, “Standard Specification for Compacted Graphite Iron Castings,” ASTM International.
[ 36 ] Founding - Compacted (vermicular) graphite cast irons, English translation of DIN EN 16079:2012-02
[ 37 ] JIS G 5505, “Compacted (vermicular) graphite cast irons,” Japan Foundry Society, Inc.
[ 38 ] GB/T 26655-2011,“蠕墨鑄鐵件”,中華人民共和國國家標準。
[ 39 ] CNS 14438, G3266,“縮狀石墨鑄鐵件”,中國國家標準。
[ 40 ] 林其加, “應用於大型風力發電機之厚壁球墨鑄鐵件之技術研發,” 國立台灣大學機研所碩士論文, 2013
[ 41 ] CNS 2112, G2014,“金屬材料拉伸試驗試片”,中國國家標準。
[ 42 ] ASTM E10, “Standard Test Method for Brinell Hardness of Metallic Materials,” ASTM International.
[ 43 ] CNS 2869, B2118,“球狀石墨鑄鐵件”,中國國家標準。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔