跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施高德
研究生(外文):Gerd Schmid
論文名稱:高功率LED被動和主動散熱之CFD模擬與實驗分析
論文名稱(外文):Numerical and Experimental Analysis of Passive and Active Cooling Solutions for High-Power LED Light Sources
指導教授:陳希立陳希立引用關係
口試委員:馬小康吳文方謝振傑江沅晉王榮昌郭祐甫
口試日期:2016-07-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:104
語文別:英文
論文頁數:169
中文關鍵詞:LED自然對流強制對流ANSYS Icepak散熱器傳熱優化
外文關鍵詞:Parallel-plate heat sinklight emitting diode (LED)natural convec- tionforced convectionslender cylinderANSYS Icepakheat transfer optimization.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LED燈具需要高效的散熱系統助於提高壽命及功能. 本文分析,優化和比較兩種散熱系統效能,支持高功率LED路燈和泛光燈. 兩個系統,一個被動一個主動,先以實驗研究,然後通過CFD模擬進行大規模的參數研究改進.
被動系統是通過自然對流冷卻的有直鰭片的矩形散熱器. 主要目的是研究鰭片間底座的長度如何影響熱性能. 總共進行55例實驗的檢查,且數據被用來驗證數值模型. 結果表明,較短的鰭片間底座長度有助於系統散熱。傳熱係數增加了高達62.7%,並降低熱阻達36.7%為0.29K/W.
主動冷卻系統是專門為大功率LED路燈. 它是由離心風扇來驅動的槍枝對流散熱系統. 風扇通過一條內管連接到燈頭以形成一個閉環強制空氣冷卻系統,其中燈柱採用於散熱. 實驗中使用的是全尺寸5m總搞的模型進行調查. 該設計包括兩個不同的熱交換器,其分別模擬和分析. 第一個是燈柱的垂直雙管單流熱交換器. 二維軸對稱CFD模型被用來研究燈柱各種流動條件下的傳熱特性. 第二個是燈頭中的水平逆流散熱片, 其模擬為利用ANSYS ICEPAK. 幾何參數和邊界條件, 如入口位置,鰭片厚度和鰭片密度的效果為了優化冷卻系統的傳熱進行分析. 結果表明,逆流散熱器在中間部分較高的散熱片密度可降低熱阻.
兩個散熱系統採用150W COB LED直接熱比較顯示,被動系統能保持LED溫度70度左右在環境溫度30度. 在相同條件下,主動冷卻系統可進一步降低LED的溫度為8-13∘C. 根據兩個散熱系統的24年經濟比較,在考慮成本和能量損耗下,使用被動系統散熱比較划算.


Effcient thermal management is one of the most important design considerations for LED applications. This thesis presents a systematic approach to the analysis, optimization, and comparison of two thermal solutions to support high-power LED street and flood lights. Both systems, one passive and one active design, were first experimentally investigated and then numerically improved by performing large-scale parametric studies. The passive solution consists of an oversized, free-hanging rectangular heat sink with straight fins, cooled by natural convection. The main aim was to study how the inter-fin base length influences the thermal performance. A total of 55 cases were examined experimentally, and the data were used to validate the numerical model. The results show that a shorter inter-fin base length can significantly enhance thermal performance, especially when the fins are along the longer base side. For the present case, the heat transfer coefficient was increased by up to 62.7%, and the thermal resistance was reduced by 36.7% to 0.29 K/W. It was further shown that the inter-fin base length greatly influences the optimal fin spacing. In addition, Nusselt correlations including a dimensionless geometrical parameter for the inter-fin base length, which are valid for a wide range of dimensions, were developed.
The active cooling system is especially designed for high-power LED street lights. It is driven by a centrifugal fan placed inside a chamber at the lower part of the lamp
post. The fan is connected to the lamp head via an internal pipe to form a closed-loop forced air cooling system, where the lamp post is used for heat dissipation. The experiments were conducted using a full-scale model with an overall height of 5 m. The design includes two different heat exchangers, which were separately modeled and analyzed. The first is a vertical double pipe single-flow heat exchanger integrated into the lamp post. A 2D-axisymmetric CFD simulation with Rayleigh numbers of over 10e10 was used to investigate the heat transfer characteristics of the lamp post for various flow conditions. The second is a horizontal counter-flow heat sink inside the lamp head, which was simulated as a 3D-model using ANSYS Icepak. The effect of geometric parameters and boundary conditions, such as the inlet position, fin thickness, and fin density, were analyzed in order to optimize the thermal performance
of the cooling system. It was shown that the counter-flow heat sink with a higher fin density in the middle section can reduce thermal resistance. A direct thermal comparison of both cooling systems using a 150 W COB LED revealed that the passive system can keep the excess temperature of the LED close to 40∘C at an ambient temperature of 30∘C. Under the same conditions, the active cooling system can further lower the LED temperature by 8 to 13∘C. Based on an economical comparison of both cooling systems over a period of 24 years, it was concluded that, in its present configuration, the additional costs and increased complexity of the active system outweigh the performance improvements.


1 Introduction 1
1.1 Fundamentals of Light-Emitting Diodes . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Literature Review 9
2.1 Introduction to Thermal Management of LEDs . . . . . . . . . . . . . 9
2.2 Passive Thermal Management . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Heat Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Vapor Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Active Thermal Management . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Fan-Cooled System . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Liquid Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Additional Active Cooling Solutions . . . . . . . . . . . . . . . 26
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Natural Convection Heat Sink Design 29
3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Natural Convection Heat Transfer . . . . . . . . . . . . . . . . 29
3.1.2 Radiation Heat Transfer . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Heat Sink Performance Metrics . . . . . . . . . . . . . . . . . 32
3.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Experimental Data Reduction . . . . . . . . . . . . . . . . . . 39
3.2.3 Experimental Uncertainty . . . . . . . . . . . . . . . . . . . . 41
3.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Numerical Setup and Governing Equations . . . . . . . . . . . 44
3.3.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Validation of Numerical Model with Experimental Data . . . . 49
3.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Temperature and Flow Visualization . . . . . . . . . . . . . . 63
3.4.5 Heat Sink Correlations . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Forced Convection Cooling System Design 73
4.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.1 Forced Convection Performance Metrics . . . . . . . . . . . . 76
4.1.2 Lamp Post Analysis: Vertical Slender Cylinder . . . . . . . . . 80
4.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Lamp Head Design . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Experimental Data Reduction and Uncertainty . . . . . . . . . 90
4.3 Numerical Analysis: Lamp Post . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Two-Dimensional Lamp Post Model . . . . . . . . . . . . . . . 92
4.3.2 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.3 Grid Independence Study . . . . . . . . . . . . . . . . . . . . 96
4.4 Numerical Analysis: Lamp Head . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Three-Dimensional Lamp Head Model . . . . . . . . . . . . . 98
4.4.2 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3 Grid Independence Study . . . . . . . . . . . . . . . . . . . . 100
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.2 Validation of Numerical Models with Experimental Data . . . 104
4.5.3 Numerical Results: Lamp Post . . . . . . . . . . . . . . . . . 111
4.5.4 Numerical Results: Lamp Head . . . . . . . . . . . . . . . . . 120
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5 Comparison of Passive and Active Cooling Systems 131
5.1 Thermal Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1.1 Experimental Method . . . . . . . . . . . . . . . . . . . . . . 131
5.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Economic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.1 Initial Investment . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2.2 Operating and Maintenance Costs . . . . . . . . . . . . . . . . 137
5.2.3 Total Costs Comparison . . . . . . . . . . . . . . . . . . . . . 138
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Conclusions and Outlook 141
A Overview of Studies on Thermal Management of LEDs 157
B Thermo-Physical Properties of Air 163
C Experimental and Numerical Data 165


[1] International Energy Agency, About lighting. http://www.iea.org/topics/ energyefficiency/subtopics/lighting/. Accessed: 2016-05-03.
[2] A. Thorseth, Characterization, Modeling, and Optimization of Light-Emitting Diode Systems. PhD dissertation, University of Copenhagen, Department of Photonics Engineering, 2011.
[3] McKinsey and Company, Lighting the way: Perspectives on the global lighting market, 2012.
[4] M.-H. Chang, D. Das, P. V. Varde, and M. Pecht, Light emitting diodes relia- bility review, Microelectronics Reliability, vol. 52, pp. 762 782, 2012.
[5] S. Liu and J. Lin, Chinese LED industry in deep waters, only a handful of LED manufacturers to remain. http://www.ledinside.com/news/, Oct. 2015. Accessed: 2016-06-04.
[6] F. D. Roscam Abbing, Light-Emitting Diode Junction-Temperature Sensing using Various Voltage/Current Measurement Techniques. MSc thesis, Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Sciences Electronic Instrumentation Laboratory / DIMES, Aug. 2011.
[7] Thermal Management of Cree XLamp LEDs, Application Note, Cree Inc., 2014.
[8] S. Kei, Schematic diagrams of light emitting diodes (LED). http://commons.wikimedia.org/wiki/File:PnJunction-LED-E.PNG., 2006. Accessed: 2016-04-22.
[9] M. Gleva, Enhanced Active Cooling of High Power LED Light Sources by Utilizing Shrounds and Radial Fins. Master thesis, Georgia Institute of Technology, George W. Woodru School of Mechanical Engineering, 2009.
[10] S. Liu and X. Luo, LED Packaging for Lighting Applications: Design, Manufacturing and Testing. Singapore: John Wiley and Sons (Asia) Pte Ltd., 2011.
[11] J. R. Pryde and D. C. Whalley, A review of LED technology trends and relevant thermal management strategies, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (Orlando, FL), pp. 31 38, May 2014.
[12] licht.de, LED lifespan. http://en.licht.de/en/info-and-service/lighting-specials/led-the-light-of-the-future/the-led-light-source/leds-lifespan/. Accessed: 2015-09-15.
[13] R. Mahalingam, Air Cooling for LED Lighting, ch. 7, pp. 267 298. Thermal Management for LED Applications, New York: Springer Science and Business Media, 2014.
[14] SEOUL Semiconductor Research and Development Center, Life Time Graph of Z-Power LED, 2008.
[15] Energy efficient street lighting, Case Study, U.S. Agency for International Development (USAID) India, June 2010.
[16] R. Compliant, COB LED application note, Application Note V1.1,SemiLEDs, 2012.
[17] R. Swamy, Thermal Measurement Guidelines for SSL LEDs, Application Guide, Osram Opto Semiconductors, Aug. 2010.
[18] H. K. Ma, B. R. Chen, H. W. Lan, K. T. Lin, and C. Y. Chao, Study of an LED device with vibrating piezoelectric ns, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), (San Jose, CA), pp. 267 272, Mar. 2009.
[19] X. Luo, W. Xiong, T. Cheng, and S. Liu, Design and optimization of horizontally-located plate fin heat sink for high power LED street lamps, 59th Electronic Components and Technology Conference, (San Diego, CA), pp. 854 859, May 2009.
[20] H.-S. Huang, Y.-C. Chiang, C. K. Huang, and S. L. Chen, Experimental investigation of vapor chamber module applied to high-power light-emitting diodes, Experimental Heat Transfer, vol. 22, pp. 26 38, 2009.
[21] X. Luo and S. Liu, A microjet array cooling system for thermal management of high-brightness LEDs, Transactions on Advanced Packaging, vol. 30, no. 3, pp. 475 484, 2007.
[22] S. Liu, J. Yang, Z. Gan, and X. Luo, Structural optimization of a microjet based cooling system for high power LEDs, International Journal of Thermal Sciences, vol. 47, pp. 1086 1095, 2008.
[23] J. Vetrovec and A. Litt, High-performance heat sink for solid-state lighting, Proceedings of the SPIE, Volume 7231, 2009.
[24] Y. Lai, N. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Wurtenberger, Liquid cooling of bright LEDs for automotive applications, Applied Thermal Engineering, vol. 29, pp. 1239 1244, 2009.
144[25] Y. Deng and J. Liu, A liquid metal cooling system for the thermal management of high power LEDs, International Communications in Heat and Mass Transfer, vol. 37, pp. 788 791, 2010.
[26] G.-J. Chen, Thermal analysis of high power LEDs on cold plate, tech. rep., Yuan Ze University, 2011. In Chinese.
[27] P. Anithambigai, K. Dinash, D. Mutharasu, S. Shanmugan, and C. Lim, Thermal analysis of power LED employing dual interface method and water flow as a cooling system, Thermochimica Acta, vol. 523, pp. 237 244, 2011.
[28] Z. Wan, J. Liu, K. Su, X. Hu, and S. M, Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs, Microelectronics Journal, vol. 42, pp. 632 637, 2011.
[29] J. Wang, X.-J. Zhao, Y.-X. Cai, C. Zhang, and W.-W. Bao, Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package, Energy Conversion and Management, vol. 101, pp. 532 540, 2015.
[30] T. S. Jung and H. K. Kang, Evaluation on the cooling performance to design heat sinks for LED lightings, Journal of the Korean Society for Precision Engineering, vol. 29, no. 7, pp. 778 784, 2012. In Korean.
[31] B. Ramos-Alvarado, B. Feng, and G. Peterson, Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays, Applied Thermal Engineering, vol. 59, pp. 648 659, 2013.
[32] E. Tamdogan and M. Arik, Natural convection immersion cooling with enhanced optical performance of light-emitting diode systems, Journal of Electronic Packaging, vol. 137, pp. 041006 1, 2015.
[33] Z.-B. Wang, J. Zhang, Y.-C. Liu, Q. Zhang, and Z.-Q. Li, Study on the water cooling technology for the high power LED array, Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, (Whenyang), pp. 1289 1292, Sept. 2013.
[34] H. Ye, M. Mihailovic, C. Wong, H. van Zeijl, A. Gielen, G. Zhang, and P. Sarro, Two-phase cooling of light emitting diode for higher light output and increased efficiency, Applied Thermal Engineering, vol. 52, pp. 353 359, 2013.
[35] M. Schneider, B. Leyrer, C. Herbold, and S. Maikowske, Very high power density LED modules on aluminum substrates with embedded water, Electronic Components and Technology Conference (ECTC), (Las Vegas, NV), pp. 529 534, May 2013.
[36] B. H. Thang, L. D. Quang, N. M. Hong, P. H. Khoi, and P. N. Minh, Application of multiwalled carbon nanotube nano fluid for 450 W LED floodlight, Journal of Nanomaterials, 2014.
145[37] S.-M. Kim and K.-Y. Kim, Optimization of a hybrid double-side jet impingement cooling system for high-power light-emitting diodes, Journal of Electronic Packaging, vol. 136, pp. 011010 1, 2014.
[38] S.-S. Hsieh, Y.-F. Hsu, and M.-L. Wang, A microspray-based cooling system for high powered LEDs, Energy Conversion and Management, vol. 78, pp. 338 346, 2014.
[39] C.-Y. Yang, W.-C. Liu, C.-T. Yeh, and S.-N. Tsai, A novel liquid cooling system for high power LED street lamp, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), (San Jose, CA), pp. 151 153, Mar. 2013.
[40] D. Li, G. Zhang, K. Pan, X. Ma, L. Liu, and J. Cao, Numerical simulation on heat pipe for high power LED multi-chip module packaging, International Conference on Electronic Packaging Technology and High Density Packaging, (Beijing), pp. 393 397, Aug. 2009.
[41] X.-Y. Lu, T.-C. Hua, M.-J. Liu, and Y.-X. Cheng, Thermal analysis of loop heat pipe used for high-power LED, Thermochimica Acta, vol. 493, pp. 25 29, 2009.
[42] R. Wang and J. Li, A cooling system with a fan for thermal management of high-power LEDs, Journal of Modern Physics, vol. 1, pp. 196 199, 2010.
[43] W.-H. Chi, T.-L. Chou, C.-N. Han, S.-Y. Yang, and K.-N. Chiang, Analysis of thermal and luminous performance of MR-16 LED lighting module, Transactions on Components and Packaging Technologies, vol. 33, no. 4, 2010.
[44] J. Petroski, J. Norley, B. Reis, J. Schober, and R. A. Reynolds, Conduction cooling of large LED array systems, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (Las Vegas, NV), pp. 1 10, May 2010.
[45] B. Noska, C. Cheung, H. Jin, and R. Mahalingam, Enabling new LED designs through advanced cooling technology, 26th Annual Semiconductor Thermal Measurement and Management Symposium, (Santa Clara, CA), pp. 305 310,Feb. 2010.
[46] S.-M., Lee, S.-I. Lee, J.-K. Yang, J.-C. Lee, and D.-H. Park, Optimization of heatsink and analysis of thermal property in 75 W LED module for street lighting, Transaction of the Korean Institute of Electrical Engineers (KIEE),vol. 59, 2010. In Korean.
[47] J.-C. Wang, R.-T. Wang, T.-L. Chang, and D.-S. Hwang, Development of 30 watt high-power LEDs vapor chamber-based plate, International Communications in Heat and Mass Transfer, vol. 53, pp. 3990 4001, 2010.
146[48] H. Ma, B. R. Chen, H. Lan, and C. Chao, Study of an LED device with a honeycomb heat sink, Semiconductor Thermal Measurement and Management Symposium, (Santa Clara, CA), pp. 289 298, Feb. 2010.
[49] Z. Lin, S. Wang, J. Huo, Y. Hu, J. Chen, W. Zhang, and E. Lee, Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes, Applied Thermal Engineering, vol. 31, pp. 2221 2229, 2011.
[50] X.-Y. Lu, T.-C. Hua, and Y.-P. Wang, Thermal analysis of high power LED package with heat pipe heat sink, Microelectronics Journal, vol. 42, pp. 1257 1262, 2011.
[51] K. Zhang, D. G. W. Xiao, X. H. Z. H. Fan, Z. Gao, and M. M. F. Yueri, Novel cooling solutions for LED solid state lighting, 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), (Shanghai, China), pp. 1128 1132, Aug. 2011.
[52] J.-C. Shyu, K.-W. Hsu, K.-S. Yang, and C.-C. Wang, Thermal characterization of shrouded plate fin array on an LED backlight panel, Applied Thermal Engineering, vol. 31, pp. 2909 2915, 2011.
[53] X. Tian, W. Chen, and J. Zhang, Thermal design for the high-power LED lamp, Journal of Semiconductors, vol. 32, no. 1, pp. 014009 1, 2011.
[54] S. H. Jang and M. W. Shin, Thermal optimization of high power LED arrayswith a fin cooling system, Optical and Quantum Electronics, vol. 42, no. 11-13, pp. 678 684, 2011.
[55] V. M. Kiseev, D. S. Aminev, and V. G. Cherkashin, Two-phase systems forlight-emitting diodes cooling, Heat Pipe Science and Technology, An International Journal, vol. 2, 2011.
[56] J.-C. Wang, Thermal investigations on LED vapor chamber-based plates, International Communications in Heat and Mass Transfer, vol. 38, pp. 1206-1212, 2011.
[57] J.-S. Park and C. Huh, A study on improved efficiency and cooling LED lighting using a Seebeck effect, Conference on Power Engineering and Renewable Energy (ICPERE), 2012.
[58] X.-R. Meng, X.-L. Ma, J.-F. Lu, and X.-L. Wei, A study on improving innatural convection heat transfer for heat sink of high power LEDs, Advanced Materials Research, vol. 383-390, pp. 6834 6839, 2012.
[59] H.-H. Wu, K.-H. Lin, and S.-T. Lin, A study on the heat dissipation of high power multi-chip COB LEDs, Microelectronics Journal, vol. 43, pp. 280 287, 2012.
[60] A. Fan, R. Bonner, S. Sharratt, and Y. S. Ju, An innovative passive cooling method for high-performance light-emitting diodes, 28th Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), (San Jose, CA), pp. 319 324, Mar. 2012.
[61] J. Hsieh, H. Huang, and S. Shen, Experimental study of microrectangular groove structure covered with multi mesh layers on performance of at plate heat pipe for LED lighting module, Microelectronics Reliability, vol. 52, pp. 1071 1079, 2012.
[62] H. P. de Bock, P. Chamarthy, J. L. Jackson, and B. Whalen, Investigation and application of an advanced dual piezoelectric cooling jet to a typical electronics cooling configuration, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (San Diego, CA), pp. 1387 1394, May 2012.
[63] B.-M. Song, B. Han, A. Bar-Cohen, M. Arik, R. Sharma, and S. Weaver, Life prediction of LED-based recess downlight cooled by synthetic jet, Microelectronics Reliability, vol. 52, pp. 937 948, 2012.
[64] S.-W. Kang, K.-C. Chien, and W.-C. Lin, Multiple-layer heat dissipation module for LED streetlamps, Journal of Applied Science and Engineering, vol. 15, no. 2, pp. 97 104, 2012.
[65] B. H. An, H. J. Kim, and D.-K. Kim, Nusselt number correlation for natural convection from vertical cylinders with vertically oriented plate fins, Experimental Thermal and Fluid Science, vol. 41, pp. 59 66, 2012.
[66] Z. Wang, Y. Zhang, Z. Wang, S. Xie, and Y. Hao, Study on heat pipe sink for cooling high power LED, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, (Xiamen, China), 2012.
[67] H. Kim, K. J. Kim, and Y. Lee, Thermal performance of smart heat sinks for cooling high power led modules, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (San Diego, CA), pp. 962 967, May 2012.
[68] J. Li, F. Lin, D. Wang, and W. Tian, A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips, Applied Thermal Engineering, vol. 56, pp. 18 26, 2013.
[69] K.-S. Yang, C.-H. Chung, M.-T. Lee, S.-B. Chiang, C.-C. Wong, and C.-C. Wang, An experimental study on the heat dissipation of LED lighting module using metal/carbon foam, International Communications in Heat and Mass Transfer, vol. 48, pp. 73 79, 2013.
[70] L. Ma, Y. Yang, and J. Liu, Cooling of high power LEDs through ventilating ambient air to front surface of chip, Heat and Mass Transfer, vol. 49, pp. 85 94, 2013.
[71] Z. Li and L. Jia, Experimental study an natural convection cooling of LED using a at-plate pulsating heat pipe, Heat Transfer Research, vol. 44, no. 1, pp. 133 144, 2013.
[72] O. Iaronka, V. C. Bender, and T. B. Marchesan, Finite element analysis of a closed cooling system applied to thermal management of LED luminaires, Brazilian Power Electronics Conference, 2013.
[73] V. Semenyuk and R. Dekhitiaruk, Novel thermoelectric modules for cooling powerful LEDs: Experimental results, Journal of Electronic Materials, vol. 42, no. 7, pp. 2227 2232, 2013.
[74] Y. Tromov, S. Lishik, P. Pershukevich, and V. Tsvirko, Quasi-active thermal control in LED street lights, Semiconductor Physics, Quantum Electronics and Optoelectronics, vol. 16, no. 2, pp. 201 205, 2013.
[75] J.-C. Wang, Thermoelectric transformation and illuminative performance analysis of a novel LED-MGVC device, International Communications in Heat and Mass Transfer, vol. 48, pp. 80 85, 2013.
[76] M. Maaspuro and A. Tuominen, Thermal analysis of LED spot lighting device operating in external natural or forced heat convection, Microelectronics Reliability, vol. 53, pp. 428 434, 2013.
[77] Y. Tang, X. Ding, B. Yu, Z. Li, and B. Liu, A high power LED device with chips directly mounted on heat pipes, Applied Thermal Engineering, vol. 66, pp. 632 639, 2014.
[78] J. Loeschke, T. Sattel, T. Vontz, G. Mitic, M. Honsberg-Riedl, and R. Mock, A piezoelectric actuator concept for LED cooling by ultrasonic streaming, 26th International Symposium on Power Semiconductor Devices and IC''s, (Waikoloa, Hawaii), pp. 454 457, June 2014.
[79] J. Li, W. Tian, and L. Lv, A thermosyphon heat pipe cooler for high power LEDs cooling, Heat and Mass Transfer, pp. 1 8, 2014.
[80] C. M. Kim and Y. T. Kang, Cooling performance enhancement of LED (light emitting diode) using nano-pastes for energy conversion application, Energy, vol. 76, pp. 468 476, 2014.
[81] H. Ye, B. Li, H. Tang, J. Zhao, C. Yuan, and G. Zhang, Design of vertical fin arrays with heat pipes used for high-power light-emitting diodes, Microelectronics Reliability, vol. 54, pp. 2448 2455, 2014.
[82] T. Kobayashi, S. Ishikawa, R. Hashimoto, H. Kanematsu, and Y. Utsumi, Effect of heat sink structure on cooling performance of LED bulb, 3rd International Conference on Design Engineering and Science(ICDES), (Pilson, Czech Republic), Aug. 2014.
[83] J. Ma, X. Fu, R. Hu, and X. Luo, Effect of inclination angle on the performance of a kind of vapor chamber, Journal of Solid State Lighting, vol. 1:12, 2014.
[84] G.-J. Huang, S.-C. Wong, and C.-P. Lin, Enhancement of natural convection heat transfer from horizontal rectangular n arrays with perforations in fin base, International Journal of Thermal Sciences, vol. 84, pp. 164 174, 2014.
[85] M. Kaya, Experimental study on active cooling systems used for thermal management of high-power multichip light-emitting diodes, The Scientific World Journal, pp. 1 7, 2014.
[86] V. A. Costa and A. M. Lopes, Improved radial heat sink for LED lamp cooling, Applied Thermal Engineering, vol. 70, pp. 131 138, 2014.
[87] N. J. Sunderland, J. Lorenzo, and T. G. Davis, Novel polycarbonate heat sinks for efficient thermal management, 14th Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), (Orlando, FL), May 2014.
[88] D. Jang, S.-J. Yook, and K.-S. Lee, Optimum design of a radial heat sink with a fin-height pro le for high-power LED lighting applications, Applied Energy, vol. 116, pp. 260 268, 2014.
[89] Q. Shen, D. Sun, Y. Xu, T. Jin, and X. Zhao, Orientation effects on natural convection heat dissipation of rectangular n heat sinks mounted on LEDs, International Journal of Heat and Mass Transfer, vol. 75, pp. 462 469, 2014.
[90] H. K. Ma, S. K. Liao, Y. T. Li, Y. F. Li, and C. L. Liu, The application of micro multiple piezoelectric-magnetic fans (m-MPMF) on LEDs thermal management, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), (San Jose, CA), pp. 159 163, Mar. 2014.
[91] K. Geisler, Parametric design of a low-profile, forced convection heat sink for high-power, high-density LED arrays, Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), (Orlando, Fl), pp. 47 58, May 2014.
[92] S. Sufian, Z. Fairuz, M. Zubair, M. Abdullah, and J. Mohamed, Thermal analysis of dual piezoelectric fans for cooling multi-LED packages, Microelectronics Reliability, vol. 54, pp. 1534 1543, 2014.
[93] J. Wang, Y.-X. Cai, X.-J. Zhao, and C. Zhang, Thermal design and simulation of automotive headlamps using white LEDs, Microelectronics Journal, vol. 45, pp. 249 255, 2014.
[94] J.-C. Wang, Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles, Microelectronics Journal, vol. 45, pp. 416 423, 2014.
150[95] K.-S. Yang, T.-Y. Yang, C.-W. Tu, C.-T. Yeh, and M.-T. Lee, A novel at polymer heat pipe with thermal via for cooling electronic devices, Energy Conversion and Management, vol. 100, pp. 37 44, 2015.
[96] E. Balvis, R. Bendana, H. M. P. Fernandez de Cordoba, and A. Paredes, Analysis of a passive heat sink for temperature stabilization of high-power LED bulbs, Journal of Physics: Conference Series 605, 2015.
[97] T.-M. Jeng, Combined convection and radiation heat transfer of the radially finned heat sink with a built-in motor fan and multiple vertical passages, International Journal of Heat and Mass Transfer, vol. 80, pp. 411 423, 2015.
[98] D. Jang, D. R. Kim, and K.-S. Lee, Correlation of cross-cut cylindrical heat sink to improve the orientation effect of LED light bulbs, International Journal of Heat and Mass Transfer, vol. 84, pp. 821 826, 2015.
[99] M. W. Jeong, S. W. Jeon, S. H. Lee, and Y. Kim, Effective heat dissipation and geometric optimization in an LED module with aluminum nitride (AlN) insulation plate, Applied Thermal Engineering, vol. 76, pp. 212 219, 2015.
[100] M. W. Jeong, S. W. Jeon, and T. Kim, Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module, Applied Thermal Engineering, vol. 91, pp. 105 115, 2015.
[101] B. Li and C. Byon, Orientation effects on thermal performance of radial heat sinks with a concentric ring subject to natural convection, International Journal of Heat and Mass Transfer, vol. 90, pp. 102 108, 2015.
[102] N. Badalan and P. Svasta, Peltier elements vs. heat sink in cooling of high power LEDs, 38th Spring Seminar on Electronics Technology, (Eger, Hungary), pp. 124 128, May 2015.
[103] C. Hsieh and Y. H. Li, The study for saving energy and optimization of LED street light heat sink design, Advances in Materials Science and Engineering, 2015.
[104] X.-J. Zhao, Y.-X. Cai, J. Wang, X.-H. Li, and C. Zhang, Thermal model design and analysis of the high-power LED automotive headlight cooling device, Applied Thermal Engineering, vol. 75, pp. 248 258, 2015.
[105] S.-J. Park, D. Jang, and K.-S. Lee, Thermal performance improvement of a radial heat sink with a hollow cylinder for LED downlight applications, International Communications in Heat and Mass Transfer, vol. 89, pp. 1184-1189, 2015.
[106] D. Jang, S.-J. Park, and K.-S. Lee, Thermal performance of a PCB channel heat sink for LED light bulbs, International Journal of Heat and Mass Transfer, vol. 89, pp. 1290 1296, 2015.
[107] P. Zhang, J. Zeng, X. Chen, M. Cai, J. Xiao, and D. Yang, An experimental investigation of a 100-w high-power light-emitting diode array using vapor chamber-based plate, Advances in Mechanical Engineering, vol. 7, no. 11, pp. 1 7, 2015.
[108] K. F. Soekmen, E. Yuruklu, and N. Yamankaradeniz, Computational thermal analysis of cylindrical fin design parameters and a new methodology for defining fin structure in LED automobile headlamp cooling applications, Applied Thermal Engineering, vol. 94, pp. 534 542, 2016.
[109] D. H. Shin, S. H. Baek, and H. S. Ko, Development of heat sink with ionic wind for LED cooling, International Journal of Heat and Mass Transfer, vol. 93, pp. 516 528, 2016.
[110] R.-T. Wang and J.-C. Wang, Analyzing the structural designs and thermal performance of nonmetal lighting devices of LED bulbs, International Journal of Heat and Mass Transfer, vol. 99, pp. 750 761, 2016.
[111] K. Azar, Lighting the way for LED development. http://www.designworldonline.com/lighting-the-way-for-led-development/, 2012. Accessed: 2015-09-16.
[112] D. Dannelley, Enhancement of Extended Surface Heat Transfer. Phd thesis, University of Alabama, Department of Mechanical Engineering, 2013.
[113] D. Hanamant, K. N. Vijaykumar, and D. Kavita, Natural convection heat transfer flow visualization of perforated fin arrays by CFD simulation, International Journal of Research in Engineering and Technology, vol. 2, no. 12, pp. 483 490, 2013.
[114] Advanced Thermal Solutions, Inc, Heat sink types: The pros and cons. http://www.qats.com/cms/, 2011. Accessed: 2016-05-28.
[115] J. VanEngelenhoven, G. L. Solbrekken, and K. J. L. Geisler, Thermal performance maps for forced air cooling of ruggedized electronics enclosures, InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, (Vancouver, BC, Canada), pp. 801 809, July 2007.
[116] H. Ye, S. Koh, H. van Zeijl, and A. W. J. Gielen, A review of passive thermal management of LED module, Journal of Semiconductors, vol. 32, no. 1, pp. 014008 1 4, 2011.
[117] C. A. Soule, Future trends in heat sink design. http://www.electronics-cooling.com/2001/02/future-trends-in-heat-sink-design/, 2001. Accessed: 2016-05-24.
[118] Glacialtech inc., Igloo SR Series. http://www.glaciallight.com/products/skd-stamping-SR.htm. Accessed: 2015-08-12.
152[119] GLB-170W-7B - LED Grow Light . https://www.superbrightleds.com/moreinfo/led-grow-lights/full-spectrum-led-grow-light-300-watt-equivalent-rectangular-panel-grow-lamp/1658/. Accessed: 2016-06-12.
[120] B. Ramos-Alvarado, P. Li, H. Liu, and A. Hernandez-Guerrero, CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells, Applied Thermal Engineering, vol. 31, pp. 2494 2507, 2011.
[121] C.-C. Shih, The Performance Analysis and Application of Helical Ground Heat Exchangers. PhD thesis, National Taiwan University, Department of Mechanical Engineering, July 2012. In Chinese.
[122] M. Kanellos, It''s lights out for LED startup switch. http://www.forbes.com/sites/michaelkanellos/2014/12/02/its-lights-out-for-led-startup-switch/, 2014. Accessed: 2016-05-23.
[123] Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill Education, fifth ed., 2015.
[124] Y. Shabany, Radiation heat transfer from plate- n heat sinks, 24th Semiconductor Thermal Measurement and Management Symposium, (San Jose, CA), pp. 132 136, Mar. 2008.
[125] ANSYS, Inc., ANSYS Icepak user''s guide, Release 15.0, Canonsburg, PA, Nov. 2013.
[126] W. Elenbaas, Heat dissipation of parallel plates by free convection, Physica, vol. 9, no. 1, pp. 1 28, 1942.
[127] A. Bar-Cohen and M. Iyengar, Design and optimization of air-cooled heat sinks for sustainable development, Transactions on Components and Packaging Technologies, vol. 25, pp. 584 591, Feb. 2002.
[128] C. W. Leung and S. D. Probert, Heat-exchanger performance: Effect of orientation, Applied Energy, vol. 33, pp. 235 252, 1989.
[129] I. Tari and M. Mehrtash, Natural convection heat transfer from horizontal and slightly inclined plate- n heat sinks, Applied Thermal Engineering, vol. 61, pp. 728 736, 2013.
[130] J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook. Cambridge, Massachusetts: Phlogiston Press, 2010.
[131] R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook, Technology Drivers Part 1. Springer Science and Business Media, second ed., 2001.
153[132] Electrolube, Thermal manamgent solutions technical data sheet: Heat transfer compound, 2013.
[133] B. Yazicioglu, Performance of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer. Master thesis, Middle East Technical University, Department of Mechanical Engineering, Jan. 2005.
[134] M. Ahmadi, G. Mostafavi, and M. Bahrami, Natural convection from interrupted vertical walls, Journal of Heat Transfer, vol. 136, pp. 112501 1 8, 2014.
[135] J. P. Holman, Experimental Methods for Engineers. McGraw-Hill Mechanical Engineering, seventh ed., 2007.
[136] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer, ch. 5, pp. 305 306. Stamford, CT: Cengage Learning, seventh ed., 2011.
[137] A. Bakker, Applied Computational Fluid Dynamics - Lecture 13 Heat Transfer. Lecture slides, 2006. Dartmouth College, Hanover, NH.
[138] D. Sahray, H. Shmueli, G. Ziskind, and R. Letan, Study and optimization of horizontal-base pin- n heat sinks in natural convection and radiation, Journal of Heat Transfer, vol. 132, pp. 1 13, 2010.
[139] B. Andersson, R. Andersson, L. Hakansson, M. Mortensen, R. Sudiyo, B. van Wachem, and L. Hellstroem, Computational Fluid Dynamics for Engineers. The Edinburgh Building, Cambridge, UK: Cambridge University Press, 2012.
[140] C. W. Leung and S. D. Probert, Heat-exchanger design: Optimal length of an array of uniformly-spaced vertical rectangular ns protruding upwards from a horizontal base, Applied Energy, vol. 30, pp. 29 35, 1988.
[141] Jered Wells, R-square: The coefficient of determination. https://www.mathworks.com/matlabcentral/ leexchange/34492-r-square the-coefficient-of-determination. Accessed: 2016-06-03.
[142] T.-H. Yang, Heat-dissipating structure having embedded support tube to form internally recycling heat transfer fluid and application apparatus, Jan. 1 2015. European Patent Application: EP 2 818 818 A3.
[143] T.-H. Yang, Heat-dissipating structure having embedded support tube to form internally recycling heat transfer uid and application apparatus, Jan. 1 2015. US Patent Application, Pub. No.: US 2015/0000875 A1.
[144] A. Bejan, Convection Heat Transfer. Hoboken, New Jersey: John Wiley and Sons, Inc., fourth ed., 2013.
[145] C. K. Loh and D. J. Chou, Comparative analysis of heat sink pressure drop using di erent methodologies, Semiconductor Thermal Measurement and Management Symposium, pp. 148 153, Mar. 2004.
[146] J. R. Culham and Y. S. Muzychka, Optimization of plate fin heat sinks using entropy generation minimization, Transactions on Components and Packaging Technologies, vol. 24, no. 2, pp. 159 165, 2001.
[147] Z. P. Duan and Y. S. Muzychka, Pressure drop of impingement air cooled plate fin heat sinks, Transactions of the ASME, vol. 129, pp. 190 194, 2007.
[148] H. M. Hassoon, Pressure drop in 180 degree pipe bends, Building Services Engineering Research and Technology, vol. 3, no. 2, pp. 70 74, 1982.
[149] Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications, ch. 8. 1221 Avenue of the Americans, New York, NY 10020: McGraw-Hill, first ed., 2006.
[150] Y. S. Muzychka and M. M. Yovanovich, Modeling nusselt numbers for thermally developing laminar ow in non-circular ducts, Joint Thermophysics Heat Transfer Conference, 1998.
[151] G. N. Ellison, Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling, ch. 7, pp. 126 129. 6000 Broken Sound Parkway NW, Boca Raton, FL: CRC Press, Taylor and Francis Group, rst ed., 2011.
[152] Y. A. Cengel and J. M. Cimbala, Fluid mechanics: fundamentals and applications. McGraw-Hill series in mechanical engineering, New York: McGraw-Hill, 2006.
[153] A. Faghri, Y. Zhang, and J. R. Howell, Advanced Heat and Mass Transfer, ch. 6, pp. 543 546. Global Digital Press, 2010.
[154] S. K. S. Boetcher, Natural Convection from Circular Cylinders. SpringerBriefs in Applied Sciences and Technology, Heidelberg: Springer, 2014.
[155] R. Huber, Temperature measurement with thermocouples, Application Note, Osram Opto Semiconductors, Dec. 2013.
[156] ANSYS, Inc., Ansys Fluent theory guide, Release 14.5, Canonsburg, PA, Nov. 2013.
[157] A. Bakker, Applied Computational Fluid Dynamics - Lecture 10 Turbulence Models. Lecture slides, 2006. Dartmouth College, Hanover, NH.
[158] M. R. Shaalan, M. A. Saleh, O. Mesalhy, and M. L. Elsayed, Thermo/fluid performance of a shielded heat sink, International Journal of Thermal Sciences, vol. 60, pp. 171 181, 2012.
[159] H.-T. Chen, S.-T. Lai, and L.-Y. Huang, Investigation of heat transfer characteristics in plate-fin heat sink, Applied Thermal Engineering, vol. 50, pp. 352-360, 2013.
[160] Thermal Solutions Inc., Optimum n spacing for fan-cooled heat sinks, 2005.
[161] United States Department of Energy, ENERGY STAR Program Requirements for Solid State Lighting Luminaires. Version 1.2, https://www.energystar.gov/index, 2008. Accessed: 2016-06-16.
[162] U. Eicker and D. Pietruschka, Optimization and economics of solar cooling systems, Advances in Building Energy Research, vol. 3, no. 1, pp. 45 82, 2009.
[163] Microelectronics Heat Transfer Laboratory, Fluid properties calculator. Online, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊