(3.227.208.0) 您好!臺灣時間:2021/04/21 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉亦凡
研究生(外文):Alan Yih-Fine Liu
論文名稱:適用於真空X光顯微術之力回饋式微型撓性夾爪之設計開發
論文名稱(外文):Design and development of flexible clamp with force feedback control adapted to X-ray microscopy in vacuum chamber
指導教授:黃光裕
口試委員:蔡得民林沛群廖先順
口試日期:2016-06-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:撓性機構三爪夾頭線性馬達模組應變規樣品操作
外文關鍵詞:Compliant mechanismcompliant gripperthree-jaw gripperlinear motor modulestrain gagesample manipulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技發展與量測技術的進步,微奈米級顯微術已成為進行精密工程的基本門檻。X光顯微術以其三維空間的高解析力,及高達微秒級的時間解析而漸受重視,因應X光顯微術的發展許多研究成果也有所突破。進行X光顯微術時更換樣品必須透過繁瑣的抽洩真空程序,秏時且費功。應用於X光顯微術之操作系統,則必須於真空腔內完成自動化之工作,亦須因應狹長的工作空間配置來運作。同時能自動化監控,並控制系統產熱量以減小對量測結果的影響。本論文之研究目的為開發適用於X光顯微術真空腔之操作裝置。
撓性機構因其不須潤滑、無背隙問題且能夠減少使用元件的數量而廣泛的應用於精密系統之中。本論文應用線性馬達模組配合橋式撓性機構設計開發具有平行開合與自動對心功能的撓性三爪夾頭。透過類剛體模型推導三爪夾頭之動力模型,並配合二維有限元素模擬得到夾爪參數化設計的模型,能有效的因應不同夾握需求而開發適當的三爪夾頭。
本論文設計開發之撓性三爪夾頭全長95 mm,徑向寬度34 mm。夾頭可以產生超過4 mm的開合,並具有對樣品施予200 g以上軸向力之功能。採用低產熱量的應變規取代視覺影像系統,能夠即時監控夾頭所受軸向作用力與夾臂的運動狀態。


With the rapid progress of technology and metrology, micro-nanoscale microscopy has become prerequisite for precision engineering. X-ray microscopy iis recently in the limelight due to its excellent three-dimensional spatial resolution and up to microsecond time resolution. Many breakthrough novel scientific discoveries are contributed to the development of X-ray microscopy. Manual sample operation process in vacuum chamber of X-ray microscopy is a time- and energy-consuming task. Manipulators/grippers applied to the vacuum chamber should be able to automatically execute in the narrow space of X-ray microscope. Because environmental temperature fluctuation can cause obvious error for X-ray microscope, Monitoring equipment with high heat generation cannot be used. This thesis present the design and development of three jaw grippers adapted to vacuum chamber in X-ray microscope.
Compliant mechanism is widely used among precision engineering due to its lubricant-free, reduction of mechanical element and having no backlash. We use the linear motor module with bridge-type mechanical amplifier developing compliant grippers with parallel opening and auto-centered function. We developed a dynamic model through pseudo rigid body model to anticipate the dynamic performance of the gripper. Further with two dimensional finite element method analysis, a parameterized model was build, which can apply for different grasping requisition.
In this paper, the developed compliant gripper has full length of 95 mm, radial width of 34 mm. Gripper can produce more than 4 mm opening, and subject to more than 200 gwf axial force. Use strain gauge replace substitute vision imaging system can reduce thermal fluctuation and capable of real-time monitoring.


口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 V
表目錄 VIII
圖目錄 IX
符號表 XIII
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 文獻回顧 4
1.3.1 橋式位移放大機構 4
1.3.2 撓性鉸鍊結構 6
1.3.3 撓性夾爪設計 8
1.4 內容簡介 10
第 2 章 撓性夾頭之設計開發 11
2.1 概念設計 11
2.1.1 夾爪設計 11
2.1.2 抓握狀態分析 13
2.2 三爪撓性夾頭之實體化設計 18
2.2.1 夾頭幾何 19
2.2.2 軸向力回饋裝置 21
2.2.3 驅動裝置 22
第 3 章 三爪撓性夾頭之設計分析 23
3.1 三爪撓性夾頭之材料 23
3.2 類剛體模型 24
3.3 夾臂運動和作用力分析 26
3.3.1 運動分析 27
3.3.2 作用力分析 32
第 4 章 幾何參數與模擬結果 38
4.1 夾臂模擬分析 38
4.1.1 夾臂角 40
4.1.2 撓性短節點 43
4.1.3 橋式機構撓性臂 49
4.2 夾頭模擬結果與分析 53
第 5 章 量測系統與實驗結果 54
5.1 撓性夾臂性能測試 55
5.2 三爪撓性夾頭性能測試 58
第 6 章 結論與未來展望 63
參考文獻 65
附錄A Tricore 步進馬達 68
附錄B Micro-Measurement 微型應變規 69
附錄C Kyowa 應變規訊號放大器 70
附錄D Keyence 雷射位移計 72
附錄E Kyowa 荷重計 73
附錄F Kyowa 微型應變規 74
附錄G Microtech CCD相機 75


[1]Allen, T. D., Microscope : a very short introduction, Oxford: Oxford University Press, 2015.
[2]Knoll, M. and Ruska, E., “Das Elektronenmikroskop”, Zeitschrift für Physik, 1932, pp. 318-339.
[3]Knoll, M., “Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper”, 1935, Z. Tech. Phys. Vol. 16, pp. 467-475.
[4]Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., “Surface Studies by Scanning Tunneling Microscope”, Physical Review Letters, Vol. 49, No. 1, 1982, pp. 57-60
[5]Bottomley, L. A., “Scanning Probe Microscope”, Anal. Chem,.1998, 70, 425R-475R
[6]Binning, G. C., Quate, F., and Gerber, Ch., “Atomic Force Microscope”, Phys. Rev. Lett., 1086, Vol. 56, pp. 930-934.
[7]Hwu, Y., Tasi, W-L., Groso, A., Margaritondo, G., and Je, J. H., “Coherent-enhanced synchrotron radiology: simple theory and practical application”, Appl. Phys. 35 (2002) R105–R120
[8]Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C. M., Wepf, R., and Pfeiffer, F., “Ptychographic X-ray computed tomography at the nanoscale”, Nature, 467(7314), 2010, pp. 436-439.
[9]Chen-Wiegart, Y. K., Camino, F. E., and Wang, J., “Sample preparation of energy materials for X-ray nanotomography with micromanipulation”, ChemPhysChem (2014), 15, pp. 1587 – 1591
[10]Scire, F. E. and Teague, E. C., “Piezodriven 50-μm Range Stage with Subnanometer Resolution”, Review of Scientific Instrument, Vol. 49, No. 12, 1978, pp.1735-1740.
[11]Newnham, R. E., Dogan, A., Xu, Q. C., Onitsuka, K., Tresler, J., and Yoshikawa, S., “Flextensional Moonie actuators”, Ultrasonic Symposium(1993), pp. 509-513.
[12]Ma, H, -W. , Yao, S. –M., Wang, L. –Q., and Zhong, Z.g, “Analysis of the
Displacement Amplification Ratio of Bridge-type Flexure Hinge”, Sensoe and Actuator A, 132, 2006, pp. 730-736.
[13]Kim, J. H., Kim, S. H., and Kwak, Y. K., “mechanism Development of a piezoelectric actuator using a three-dimensional bridge-type hinge”, Review of Scientific Instruments, Vol. 74, No.5, 2003, pp. 2918-2924
[14]Xu, W. and King, T., “Flexure Hinge for Piezoactuator Displacement Amplifiers: Flexability, Accuracy, and Stress Consideration”, Precision Engineering, Vol. 19, 1996, pp. 4-10.
[15]Lin, R., Zhang, X., and Long, X., “Hybrid Flexural Hinges”, Review of Scientific Instruments 84(2013), 085004
[16]Cecil,.J., Vasquez, D., and Powell, D., “A review of gripping and manipulation techniques for micro-assembly applications”, International Journal of Production Research(2005).
[17]Bhargav, S., “Design and development of miniature compliant grippers for bio-micromanipulation and characterization”, PhD thesis, department of mechanical engineering, Indian Institute of Science, 2013.
[18]Zubir, M. N. M., Shirinzadeh, B., and Tien, Y., “A new design of piezoelectric driven compliant-based microgripper for manipulation”, Mechanism and Machining Theory 44(2009), pp. 2248-2264.
[19]Jiang, J. and Mockensturm, E. “A motion amplifier using an axially driven buckling beam: I. design and experiments”, Nonlinear Dynamics, 43(4), 2006, pp. 391-409.
[20]Howell, L. L., Midha, A., and Norton, T. W., “Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms”, J. Mech. Des. 118(1), 1996, pp. 126-131.
[21]Howell, L. L., Compliant Mechanisms, Wiley, New York, 2001, pp139-209.
[22]Hwu, E. T., “Linear Actuator and Linear Actuating Module,” U.S. Patent 14281-020. (2012)
[23]Huang, H. –F., Wang, W. –M., Liu, A., Chang, C. –Y., Hwu, E. –T., and Huang, K. –Y., “Long Stroke and High Resolution Positioning Device for Linear Actuator”, Proceeding of 6th International Conference of Positioning Technology, 2014, pp. 90-92.
[24]Aerospace Specification Metal Inc., ASM Metal Data Sheet, http://www.aerospacemetals.com/
[25]Grigoriev, I., Meilikhov, E., and Radzig, A., “Handbook of Physical Quantities”, CRC Press LLC, 1997, pp. 145-156.
[26]Lobontiu, N., “Compliant Mechanism: Design of Flexure Hinges”, CRC Press LLC, 2013, pp. 35-43.
[27]Chen, Z., Gandhi, U., Lee, J., and Wagoner, “Variation and consistency of Young’s modulus in steel”, Journal of Materials Processing Technology, 2016, pp. 227-243.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔