跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊柏俊
研究生(外文):Bo-Jiun Yang
論文名稱:熱電材料應用於地熱系統之分析與模擬
論文名稱(外文):Study of Thermoelectric Material Appliedto Geothermal System
指導教授:馬小康馬小康引用關係
指導教授(外文):Hsiao-Kan Ma
口試委員:王興華許嘉政顏溪成
口試委員(外文):Ching-Hua Wang
口試日期:2016-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:地熱熱電材料廢熱回收熱電模擬共軛熱傳
外文關鍵詞:Geothermal energyThermoelectric materialWaste heat recoveryThermoelectric simulationconjugate heat transfer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來能源短缺的問題日益嚴重,因此廢熱回收成為一個十分重要的議題。而熱電材料在此扮演了一個重要的角色。在地熱廠的管路上,由於會有熱量的散失,因此可以利用熱電材料將其廢熱加以回收,利用管路的熱量散失提供穩定的熱源。
本研究主要專注於模擬熱電材料在地熱模組下的廢熱回收情形,而在本論文中以實驗與模擬分別論述。在實驗方面,首先探討單片熱電材料的廢熱回收情形,其次在探討熱電材料在地熱模組中的廢熱回收情形。而在模擬方面,首先以AnsysWorkbench 中的Thermoelectric 模組模擬熱電材料的廢熱回收情形,其次在以AnsysWorkbench 中的Fluent 模組模擬熱電材料在地熱模組中的共軛熱傳,並且再搭配Thermoelectric 模組模擬熱電材料在地熱模組中廢熱回收的情形,最後再以實驗與模擬相互比對來作探討。
實驗結果發現,工研院所提供的熱電材料TEG616-6 為非常高效能的低溫型熱電片,其開路電壓,輸出功率以及內電阻會隨高溫端升高而升高,當其高溫端為200℃,低溫端為30℃時,其輸出功率可以高達5.42W,其功率密度為3387.5
In recent years, the problem of shortage of energy is growing up, therefore, waste heat recovery have become a very important issue. And the thermoelectric material plays an important role in this issue. A geothermal plant, since the heat is lost in the pipeline, we can use the thermoelectric material to recover the waste heat, and utilize dissipated heat as a stable heat source.
The aim of this study is to simulate the situation of the waste heat recovery with the geothermal module. In this thesis, the experiment and simulation are discussed. In the experiment, we investigate the case of waste heat recovery with single thermoelectric generator, followed by the geothermal module. In the simulation, we simulated the single thermoelectric generator by the Thermoelectric module in the Ansys Workbench, followed by the geothermal module which was simulated by the Fluent and the Thermoelectric module in the Ansys Workbench. Finally, we compared and discussed the experimental and simulated data.
The result shows that the thermoelectric generator TEG616-6 provided by ITRI is a high-performance thermoelectric generator,. The open circuit voltage, output power, and the internal resistance of the thermoelectric generator all increase with the elevating temperature of the high-temperature side,. When the high-temperature side was at 200℃,and the low temperature side was at 30℃, the output power can reach 5.42W, the power density was 3387.5W⁄m^2 , and the efficiency was about 5%. In terms of geothermal module, when the hot water side was at 90 ℃, and the cold water side was at 25℃, the output power can reach 2.6529W, and the power density was 414.515W⁄m^2 ,. In the simulation of the single thermoelectric generator, according to the verification process,the electrical resistivity can be predict by the first order regression analysis with intermetallic layer modification,. The seebeck coefficient and thermal conductivity can be predict by the secondary order regression analysis. In the simulation of the geothermal module, we utilized the turbulence model and the steady energy model to approach the practical situation. After comparing the experimental data with the simulated data, it shows the error is very small. In the end of the thesis, we can predict the performance of the geothermal module with the hot water temperature exceeding 100℃,. The simulation result shows that when the hot water side was at 100℃, 125℃, 150℃, 175℃ and 200℃as well as the cold water side was at 25℃, the maximum output power can reach 3.68W,5.55W, 8.68W, 13.92W and 18.66W.

目錄
致謝................................... I
摘要....................................II
Abstract................................... III
目錄......................................V
圖目錄................................... IX
表目錄..................................XIII
符號表.................................... XIV
第一章、 緒論................................ 1
1.1 前言........................................ 1
1.2 熱電(Thermoelectric)元件介紹.................. 2
1.2.1 歷史背景................................... 2
1.2.2 熱電材料的種類......................... 3
1.2.3 熱電材料的應用........................................ 5
1.3 文獻回顧............................... 5
1.4 研究動機................................ 9
1.5 研究目的................................ 9
第二章、 基礎理論.........................11
2.1 熱電三大效應...........................11
2.1.1 席貝克效應(Seebeck effect) ..........11
2.1.2 帕爾帖效應(Plitier effect)................12
2.1.3 湯姆森效應(Thomson effect) ................12
2.2 熱電基本參數介紹...............13
2.2.1 席貝克係數(Seebeck coefficient) .....................13
2.2.2 電阻率(Electrical resistance) ...........13
2.2.3 熱傳導係數(Thermal conductivity) ....... 14
2.3 熱電材料性能評估..................14
2.4 熱電溫差發電理論推導...........15
2.5 熱電溫差模組發電理論推導..................17
第三章、 實驗設備與實驗步驟...................19
3.1 熱電晶片量測模組...................19
3.2 熱電地熱模組.....................20
3.3 實驗設備與數據量測設備.....................21
3.3.1 自動控溫熱水桶.........................21
3.3.2 PID 溫度控制器........................21
3.3.3 數位式溫度計(YS-947UD) ...................21
3.3.4 電子負載機........................21
3.3.5 探針型溫度計(DTM-3108 TECPEL)..................21
3.4 實驗步驟..................22
3.4.1 熱電模組性能量測.......................22
3.4.2 熱電地熱模組測量......................22
第四章、 模擬分析.......................24
4.1 單片熱電片模擬....................24
4.1.1 模擬理論介紹........................24
4.1.2 熱電片模擬流程.......................25
4.1.3 模型建立與邊界條件設置..................25
4.1.4 建立網格................25
4.1.5 材料參數討論......................26
4.1.6 參數驗證流程......................26
4.1.7 電阻率(Electrical resistivity) ....................26
4.1.8 席貝克係數(Seebeck coefficient) ...................27
4.1.9 熱傳導係數(Thermal conductivity) ..................27
4.1.10 參數迴歸曲線結果......................27
4.1.11 材料參數表...................28
4.2 地熱模組模擬分析................28
4.2.1 數值方法.....................28
4.2.2 模擬流程圖...................30
4.2.3 模型建立..................30
4.2.4 建立網格................30
4.2.5 材料參數表.....................31
第五章、 結果與討論....................32
5.1 熱電模組測試.......................32
5.1.1 熱電片性能曲線圖...................32
5.1.2 內電阻........................32
5.1.3 輸出功率與負載電阻關係..................33
5.1.4 輸出電壓壓與電流關係..............33
5.1.5 電流與輸出功率關係........................33
5.1.6 熱電模組轉換效率........................34
5.2 地熱模組測試..................... 34
5.2.1 地熱模組性能曲線.....................35
5.2.2 地熱模組內電阻..........................35
5.2.4 流量與最大輸出功率關係..................... 35
5.3 熱電模組模擬結果......................36
5.3.1 溫度分布..........................36
5.3.2 電壓分布..........................36
5.3.3 電流分布.......................... 36
5.3.4 模擬熱電片性能曲線......................37
5.3.5 熱電模組模擬轉換效率......................37
5.4 地熱模組模擬結果.....................38
5.4.1 地熱模組流場解析.....................38
5.4.2 地熱模組溫度分析............... 39
5.4.3 地熱模組熱對流係數分析............39
5.4.3 地熱模組性能分析..................40
5.4.4 模擬內電阻...................... 41
5.4.5 地熱模組轉換效率評估.............41
5.4.6 地熱模組熱對流係數隨著流量的變化....... 41
5.4.7 地熱模組性能預測................. 42
第六章、 結論與建議...................43
6.1 結論............................ 43
6.2 建議與未來展望............... 45
參考文獻.................. 46
附圖...................... 50
附表..................... 95

[1] 經濟部能源局, "能源統計手冊, " 經濟部能源局, 2012.
[2] 經濟部能源局, "能源產業技術白皮書, " 經濟部能源局, 2012.
[3] 台經院, "區域能源整合調查與策略建議, " 台經院, 2011.
[4] 朱旭山, "熱電發電技術及其應用方向, " 工業材料雜誌286 期, 2010.
[5] Seebeck, T.J, "Magnetic polarization of metals and minerals, " Abhandlungen de Deutschen Akademie der Wissenschaften zu Berlin, 1822.
[6] Peltier, J.C, "Nouvelles experiences sur la caloricite des courans electrique, "Ann.Chim.,LV1 371, 1834.
[7] 朱旭山, ".熱電材料與原件之原理與應用, " 電子與材料雜誌, 2004.
[8] Pernecker, Gerhard, and Stephan Uhlig, "Low-enthalpy power generation with ORC-turbogenerator. The Altheim project, Upper Austria, "GHG Bulletin, 2002.
[9] Geir Thorolfsson, "Suduenes Regional Heating Corporation Svartsengi, Iceland,"Sudurnes Regional Heating Corporation, 2005.
[10] Moya, P., Nietzen, F., Castro, S., & Taylor, W, "Behavior of the Geothermal Reservoir at The Miravalles Geothermal Field During 1994-2010., "Proceedings, 2011.
[11] ZARROUK, Sadiq J.; MOON, Hyungsul, " Efficiency of geothermal power plants: A worldwide review, " Geothermics, 2014.
[12] Serpen, Umran, and Nebi Turkmen, "Reassessment of Kizildere Geothermal Power Plant after 20 years of Exploitation, " Proceedings, 2005.
[13] DiPippo, Ronald, "Geothermal power plants: principles, applications, case studies and environmental impact, " Butterworth-Heinemann, 2012.
[14] Mlcak, H., Mirolli, M., Hjartarson, H., Húsavíkur, O., & Ralph, "M, Notes from the North: a Report on the Debut Year of the 2 MW Kalina Cycle® Geothermal PowerPlant in Húsavík, Iceland, "TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL, 715-718,2002.
[15] Thomson,W, "An account of Carnot''s theory of the motive power of heat, "Proc.R.Soc Edinburgh,16,541,1849.
[16] Chen, Z. G., Han, G., Yang, L., Cheng, L., & Zou, J, "Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science,"Materials International, 22(6), 535-549, 2012.
[17] 高敏, 張景韶, "溫差電轉換及其應用, "兵器工業出版社,1996.
[18] Ota, Toshinori, C. Tokunaga, and K. Fujita,"Development of thermoelectric power generation system for industrial furnaces, " 24th International Conference on. IEEE,2005.
[19] Iwasaki, Yasuhiro, and Masatoshi Takeda, "Development of flexible thermoelectric device: Improvement of device performance, " 25th International Conference on.IEEE, 2006.
[20] Liao, Chien-Neng, Ching-Hua Lee, and Wen-Jin Chen, "Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper, " Electrochemical and solid-state letters 10.9 P23-P25, 2007.
[21] Champier, D., Bedecarrats, J. P., Rivaletto, M., & Strub, F, "Thermoelectric power generation from biomass cook stoves, " Energy, 35(2), 935-942, 2010.
[22] Ahiska, Racit, and Hayati Mamur, "Design and implementation of a new portable thermoelectric generator for low geothermal temperatures, " Renewable Power Generation, IET 7.6:700-706, 2013.
[23] J. Y. Jang, Y. C. Tsai, and C. W. Wu, " A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink, " Energy, vol. 53, pp. 270-281, 2013.
[24] Bin-Hao Chen, Yu-Li Lin, Wen-Hsuan Chao, Jeng-Yan Lin, Hsiu-Hao Hsu, Yu-Hsien Chuang, "Multi-Physics Coupling Analysis For Thermoelectric Module, "GTEA, 2013.
[25] Liu, Chun-Kai, Wei-Kuo Han, and Hsieh-Chun Hsieh, "Thermoelectric waste heat recovery for automotive, " Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2014 9th International. IEEE, 2014.
[26] H. K. Ma, Y. T. Li, C. P. Lin, and C. S. Lim, "Experimental study of rice husk gasification in a downdraft gasifier , " presented at the 9th Asia-Pacific Conference on Combustion,Gyeongju, Korea, 2013.
[27] M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, et al., "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews,vol. 30, pp. 337-355, 2014.
[28] C. C. Hsu, Y. N. Liu, and H. K. Ma, "Effect of the Zr0.5Hf0.5CoSb1-xSnx/HfO2 half-Heusler nanocomposites on the ZT value, "Journal of Alloys and Compounds, vol. 597, pp. 217-222, 2014.
[29] A. Montecucco and A. R. Knox, " Accurate simulation of thermoelectric power generating systems, " Applied Energy, vol. 118, pp. 166-172, 2014.
[30] Kossyvakis, D. N., Vossou, C. G., Provatidis, C. G.,& Hristoforou, E. V, "Computational and experimental analysis of a commercially available Seebeck module, " Renewable Energy, 74, 1-10, .2015
[31] Kossyvakis, D. N., Vossou, C. G., Provatidis, C. G., & Hristoforou, E. V, "Computational analysis and performance optimization of a solar thermoelectric generator, "Renewable Energy, 81, 150-161, .2015.
[32] Ali Ekber Özdemir, Yavuz Köysalb, Engin Özbaşb, Tahsin Atalayb, "The experimental design of solar heating thermoelectric generator with wind cooling chimney, " Energy Conversion and Management, 98, 127-133, 2015.
[33] Antonova, Elena E., and David C. Looman, "Finite elements for thermoelectric device analysis in ANSYS, " Thermoelectrics, 2005. ICT 2005. 24th International Conference on. IEEE, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top