跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥安
研究生(外文):Yen-An Chen
論文名稱:研發人工皮膚仿體應用於電刺激治療
論文名稱(外文):Development of a gelatin-based artificial skin phantom for electrical treatments
指導教授:施文彬劉建豪劉建豪引用關係
指導教授(外文):Wen-Pin ShihChien-Hao Liu
口試委員:林啟萬施博仁蔡燿全
口試委員(外文):Chii-Wann LinPo-Jen ShihYao-Chuan Tsai
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:92
中文關鍵詞:電療皮膚仿體明膠雷射蝕刻
外文關鍵詞:electrotherapyartificial skin phantomlaser ablationgelatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電療已是普及於醫療領域的物理治療療程,它被泛用於紓解疼痛、細胞修復及各種疾病的控制或治療,例如,下背痛可用電刺激療法來治療。電療是近數十年來才興起的新興療法,還有許多應用上的可能性待研究者去探討。然而,開發新療程的過程十分艱困,每次開發都需要找到有相對應疾病的病人進行電擊測試,十分沒效率,且測試的電擊又可能導致病人不必要的傷害。因此,本研究利用微機電及雷射蝕刻製程開發一種皮膚仿體,可供電療研究者做為測試平台。此仿體的力學特性及電特性和人類的表皮層相仿,且其電特性可依需求做調整。此外,此仿體具有生物相容性,這使得研究者可以在此仿體上培養電療的目標細胞,並對其施以電擊並觀察細胞反應,進而探討電療之療效。
在本文中仿體的製程、力學及電學特性量測都被詳細討論,亦實際在仿體上操作細胞培養以討論其生物相容性。最後,本文亦提出一個可能可用來探討細胞電反應的簡單實驗設計,供電療研究者參考。

An electrotherapy has become a popular physical therapy in the medical field in recent years. The wide applications include pain managements, cell repairing, and controls or treatments of various diseases. Since an electrotherapy is a relative new technology, there exists many potential applications under investigations. However, it’s still challenging to verify the effectiveness of electrotherapies on diseases because it requires clinical tests for certain illness. The improper use of the applied electricity can cause irreversible damage to patients.
The aim of this research is to develop an artificial skin phantom via MEMS fabrication and laser ablation techniques. Its mechanical and electrical properties are close to those of real human skins. In addition, this phantom is biocompatible and can be used to culture cells for electrical stimulation study.
In this research, the detailed fabrication process and the measured properties of the proposed phantom are mentioned and discussed. We also cultured cells on the phantom to investigate the biocompatibility. In the end of the thesis, we propose a potential device to investigate cell reactions to electrical stimulations for the research of
electrotherapy.

CONTENTS
口試委員審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
SYMBOL TABLE iv
CONTENTS v
LIST OF FIGURE ix
LIST OF TABLE xv
Chapter 1 Introduction 1
1.1 Backgrounds and motivation 1
1.2 Electrotherapy 1
1.2.1 Overview of electrotherapy 1
1.2.2 Clinical parameters to be considered for electrotherapy 3
1.3 Skin Phantoms and in vitro culture skin 5
1.3.1 Artificial skin phantoms 5
1.3.2 In vitro tissue-engineered skin model 8
1.3.3 Appropriate phantoms for electrotherapy and research objective 9
1.4 Thesis organization 11
Chapter 2 Design of artificial skin phantom including sweat pores 12
2.1 Skin Properties 12
2.1.1 Skin morphology 13
2.1.2 Sweat, sweat pores and sweat duct 14
2.1.3 Electrical properties of skin and equivalent circuit model 17
2.1.4 Mechanical properties of skin 21
2.2 Gelatin 22
2.2.1 Introduction to gelatin 22
2.2.2 Patterning technique of gelatin 23
2.2.3 Conductive gelatin 26
2.2.4 Biocompatibility of gelatin 27
2.3 Phantom Design 29
Chapter 3 Fabrication 33
3.1 Fabrication process for the SU-8 film 33
3.2 Combination of the SU-8 film with conductive gelatin 40
3.3 Patterning pores on gelatin 42
3.3.1 Thermal model for laser ablation 43
3.3.2 Process from patterning gelatin 51
Chapter 4 Phantom property test 54
4.1 Morphology observation 54
4.2 Mechanical property test 58
4.2.1 Experiment design 59
4.2.2 Measurement results and discussion 60
4.3 Electrical property test and the equivalent circuit 62
4.3.1 Experiment design 63
4.3.2 Measurement results and discussion 65
Chapter 5 Biocompatibility test and cell electrical stimulation 68
5.1 Techniques for cell culture of 3T3 cells 68
5.1.1 Materials 69
5.1.2 Cell culture method 70
5.2 Tests for biocompatibility on gelatin film 72
5.3 Design for electrical stimulating to cells on the phantom 74
Chapter 6 Conclusion and future work 77
6.1 Conclusion 77
6.2 Future Work 79
REFERENCE 81



REFERENCE
[1]The IEEE Standard Dictionary of Electrical and Electronics Terms Sixth Edition, IEEE Std. 100-1996, 1996.
[2]A. J. R. Macdonald, “A brief review of the history of electrotherapy and its union with acupuncture,” Acupunct. Med., vol. 11, pp. 66-75, Nov. 1993.
[3]S. H. Licht, “History of Electrotherapy,” in Therapeutic Electricity and Ultraviolet Radiation, 2nd ed. New Haven: E. Licht, 1967, pp. 1-70.
[4]K. Desmond, “Paris!,” in Gustave Trouvé: French Electrical Genius 1839-1902, 1st ed., North Carolina: McFarland, 2015, pp. 14-42.
[5]H. L. Jones, W. E. Steavenson, “Historical,” in Medical electricity: a practical handbook for students and practitioners, 1st ed. London: H. K. Lewis, 1892, pp. 1-11.
[6]T. Watson, “Current concepts in electrotherapy,” Haemophilia, vol. 8, pp. 413-418, May 2002.
[7]L. Loghavi, S. K. Sastry, and A. E. Yousef, “Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus,” Biotechnol Progr., vol. 25, pp. 85-94, Jan. 2009.
[8]L. A. MacGinitie, Y. A. Gluzband, and A. J. Grodzinsky, “Electric field stimulation can increase protein synthesis in articular cartilage explants,” J Orthopaed. Res., vol. 12, pp. 151-60, Mar. 1994.
[9]E. T. Wang and M. Zhao, “Regulation of tissue repair and regeneration by electric fields,” Chin. J. Traumatol., vol. 13, pp. 55-61, Feb. 2010.
[10]D. F. Mayor, “Electroacupuncture in context: the effects of electrotherapy,” in Electroacupuncture: a practical manual and resource, 1st ed. New York: Elsevier, 2007, pp. 39-46.
[11]G. L. Y. Cheing, E. M. L. So, and C. Y. L. Chao, “Effectiveness of electroacupuncture and interferential electrotherapy in the management of frozen shoulder,” J. Rehabil. Med., vol. 40, pp. 166-170, Mar. 2008.
[12]G. Thakral, J. LaFontaine, B. Najafi, T. K. Talal, P. Kim, and L. A. Lavery. (2013, Sep.). Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle [Online]. 4, Available: http://dx.doi.org/10.3402/dfa.v4i0.22081
[13]K. H. Walter, “Electrical apparatus for cosmetic treatment of the skin,” U.S. Patent 3107672, Oct. 22, 1963.
[14]R. Tiktinsky, L. Chen, and P. Narayan, “Electrotherapy: yesterday, today and tomorrow,” Haemophilia, vol. 16, pp. 126-131, Jul. 2010.
[15]G. Banerjee and M. Johnson, “Transcutaneous electrical nerve stimulation (TENS): A potential intervention for pain management in India ?,” Indian J. Pain., vol. 27, pp. 132-141, Sep. 2013.
[16]B. A. Simpson, “Principles of neurostimulation,” in Pain Research and Clinical Management, vol. 15, Electrical Stimulation and the Relief of pain, 1st ed. Amsterdam: Elsevier, 2003, pp. 17-36.
[17]S. Pearson, A. P. Colbert, J. McNames, M. Baumgartner, and R. Hammerschlag, “Electrical skin impedance at acupuncture points,” J. Altern. Complem. Med., vol. 13, pp. 409-418, May 2007.
[18]K. E. Sharquie, H. Al-Hamamy, and D. El-Yassin, “Treatment of cutaneous leishmaniasis by direct current electrotherapy: The Baghdadin device,” J. Dermatol., vol. 25, pp. 234-237, Apr. 1998.
[19]R. Belmonte, M. Tejero, M. Ferrer, J. M. Muniesa, E. Duarte, O. Cunillera, and F. Escalada, “Efficacy of low-frequency low-intensity electrotherapy in the treatment of breast cancer-related lymphoedema: a cross-over randomized trial,” Clin. Rehabil., vol. 26, pp. 607-618, Jul. 2012.
[20]S. Zaghi, M. Acar, B. Hultgren, P. S. Boggio, and F. Fregni, “Noninvasive Brain Stimulation with Low-Intensity Electrical Currents: Putative Mechanisms of Action for Direct and Alternating Current Stimulation,” Neuroscientist, vol. 16, pp. 285-307, Jun. 2010.
[21]J. R. Bond and B. W. Barry, “Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human skin,” J. Invest. Dermatol., vol. 90, pp. 810-3, Jun. 1988.
[22]O. A. Shergold, N. A. Fleck, and D. Radford, “The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates,” Int. J. Impact Eng., vol. 32, pp. 1384-1402, Mar. 2005.
[23]M. A. Bush, R. G. Miller, P. J. Bush, and R. B. Dorion, “Biomechanical factors in human dermal bitemarks in a cadaver model,” J. Forensic Sci., vol. 54, pp. 167-76, Jan. 2009.
[24]M. J. Adams, B. J. Briscoe, and S. A. Johnson, “Friction and lubrication of human skin,” Tribol. Lett., vol. 26, pp. 239-253, Mar. 2007.
[25]A. K. Dabrowska, G. M. Rotaru, S. Derler, F. Spano, M. Camenzind, S. Annaheim, R. Stämpfli, M. Schmid and R. M. Rossi, “Materials used to simulate physical properties of human skin,” Skin Res. Technol., vol. 22, pp. 3-14, Feb. 2016.
[26]T. Bergmann, S. Beer, U. Maeder, J. M. Burg, P. Schlupp, T. Schmidts, F. Runkel, and M. Fiebich, “Development of a skin phantom of the epidermis and evaluation by using fluorescence techniques,” in 2011 Proc. SPIE, CA, 2011, pp. T1-T9.
[27]S. Nebuya, M. Noshiro, B. H. Brown, R. H. Smallwood, and P. Milnes, “Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes,” Physiol. Meas., vol. 26, pp. S111-S118, Apr. 2005.
[28]T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr., vol. 44, pp. 1355-1365, Nov. 1997.
[29]M. Groβe Perdekamp, S. Pollak, A. Thierauf, E. Straβburger, M. Hunzinger, and B. Vennemann, “Experimental simulation of reentry shots using a skin-gelatine composite model,” Int. J. Legal Med., vol. 123, pp. 419-25, Sep. 2009.
[30]R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol., vol. 42, pp. 1971-1979, Oct. 1997.
[31]N. Chahat, M. Zhadobov, R. Sauleau, and S. I. Alekseev, “New Method for Determining Dielectric Properties of Skin and Phantoms at Millimeter Waves Based on Heating Kinetics,” IEEE T. Microw. Theory, vol. 60, pp. 827-832, Mar. 2012.
[32]J. Jachowicz, R. McMullen, and D. Prettypaul, “Indentometric analysis of in vivo skin and comparison with artificial skin models,” Skin Res. Technol., vol. 13, pp. 299-309, Aug. 2007.
[33]H. S. Yoo, Y. S. Hu, and E. A. Kim, “Effects of Heat and Moisture Transport in Fabrics and Garments Determined with a Vertical Plate Sweating Skin Model,” Textile Res. J., vol. 70, pp. 542-549, Jun. 2000.
[34]F.-M. Wang, C.-S. Gao, K. Kuklane, and I. Holmér, “A Study on Evaporative Resistances of Two Skins Designed for Thermal Manikin Tore under Different Environmental Conditions,” J Fiber Bioeng. Inform., vol. 1, pp. 301-306, Mar. 2009.
[35]M. Ponec, “Skin constructs for replacement of skin tissues for in vitro testing,” Adv. Drug Deliv. Rev., vol. 54 suppl. 1, pp. S19-S30, Nov. 2002.
[36]“Seventh Amendment to the EU Cosmetics Directive 76/768/EEC,” in The European Parliament and the Council of the European Union, European Union, 2003.
[37]F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-Layland, “Skin tissue engineering — In vivo and in vitro applications,” Adv. Drug Deliv. Rev., vol. 63, pp. 352-366, Apr. 2011.
[38]J. Jean, M. Lapointe, J. Soucy, and R. Pouliot, “Development of an in vitro psoriatic skin model by tissue engineering,” J. Dermatol. Sci., vol. 53, pp. 19-25, Jan. 2009.
[39]C. A. Harrison, C. M. Layton, Z. Hau, A. J. Bullock, T. S. Johnson, and S. MacNeil, “Transglutaminase inhibitors induce hyperproliferation and parakeratosis in tissue-engineered skin,” Brit. J. Dermatol., vol. 156, pp. 247-57, Feb. 2007.
[40]F. Netzlaff, C. M. Lehr, P. W. Wertz, and U. F. Schaefer, “The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport,” Eur. J. Pharm. Biopharm., vol. 60, pp. 167-178, Mar. 2005.
[41]S. Grimnes and Ø. G. Martinsen, “Passive tissue electrical properties,” in Bioimpedance and Bioelectricity Basics, 2nd ed., New York: Academic Press, 2008, pp. 93-137.
[42]M. MacDonald, “Skin: Your Outer Layer,” in Your Body: The Missing Manual, 1st ed., Sebastopol: O''Reilly Media, 2009, pp. 7-30.
[43]J. Sandby-Mφller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta. Derm. Venereol., vol. 83, pp. 410-413, Jun. 2003.
[44]R. M. Marks, A. G. Knight, P. Laidler, “Normal Skin,” in Atlas of Skin Pathology, 1st ed., Berlin: Springer, 1986, pp. 17-24.
[45]C. Pailler-Mattei, S. Bec, and H. Zahouani, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Med. Eng. Phys., vol. 30, pp. 599-606, Jun. 2007.
[46]K. Wilke, A. Martin, L. Terstegen, and S. S. Biel, “A short history of sweat gland biology,” Int. J. Cosmetic Sci., vol. 29, pp. 169-179, Mar. 2007.
[47]V. Minor, “Ein neues Verfahren zu der klinischen Untersuchung der Schweißabsonderung,” Dtsch. Z. Nervenheilkd., vol. 101, pp. 302-308, Jan. 1928.
[48]F. Piotr, Ł. Piotr, and W. Jan M, “Monitoring of Sweat Secretion from Eccrine Sweat Glands Using Electric Conductivity Method,” Biocybern. Biomed. Eng., vol. 32, pp. 47-57, 2012.
[49]A. C. Allenby, J. Fletcher, C. Schock, and T. F. S. Tees, “The Effect of heat, pH and organic solvents on the electrical impedance and permeability of excised human skin,” Brit. J. Dermatol., vol. 81 suppl. 4, pp. 31-39, Aug. 1969.
[50]A. Barnett, “The phase angle of normal human skin,” J. Physiol., vol. 93, pp. 349-366, May 1938.
[51]W. G. S. Stephens, “The current-voltage relationship in human skin,” Med. Electron. Biol. Eng., vol. 1, pp. 389-399, Apr. 1963.
[52]S. I. Bîrlea, N. M. Bîrlea, P. P. Breen, and G. ÓLaighin, “Identifying skin electrical properties using a standard neuromuscular electrical stimulation voltage pulse,” in Signals and Systems Conf., Galway, Irish, 2008, pp. 56-59.
[53]S. J. Dorgan and R. B. Reilly, “A model for human skin impedance during surface functional neuromuscular stimulation,” IEEE Trans. Rehabil. Eng., vol. 7, pp. 341-8, Sep. 1999.
[54]E. F. Prokhorov, J. González-Hernández, Y. V. Vorobiev, E. Morales-Sánchez, T. E. Prokhorova, and G. Z. Lelo de Larrea, “In vivo electrical characteristics of human skin, including at biological active points,” Med. Biol. Eng. Comput., vol. 38, pp. 507-511, Jun. 2000.
[55]E. Spinelli and M. Haberman, “Insulating electrodes: a review on biopotential front ends for dielectric skin-electrode interfaces,” Physiol. Meas., vol. 31, pp. S183-S198, Oct. 2010.
[56]Putnam, William, and R. Benjamin Knapp (1996, Oct.) Input/Data Acquisition System Design for Human Computer Interfacing. Stanford, CA. [Online]. Available: http://ccrma.stanford.edu/CCRMA/Courses/252/sensors/sensors.html
[57]P. G. Agache, C. Monneur, J. L. Leveque, and J. De Rigal, “Mechanical properties and Young''s modulus of human skin in vivo,” Arch. Dermatol. Res., vol. 269, pp. 221-232, Dec. 1980.
[58]J. F. Manschot and A. J. Brakkee, “The measurement and modelling of the mechanical properties of human skin in vivo - II. The model,” J. Biomech., vol. 19, pp. 517-21, Oct. 1985.
[59]S. Diridollou, F. Patat, F. Gens, L. Vaillant, D. Black, J. M. Lagarde, et al., “In vivo model of the mechanical properties of the human skin under suction,” Skin Res. Technol., vol. 6, pp. 214-221, Nov. 2000.
[60]F. M. Hendriks, D. Brokken, J. T. van Eemeren, C. W. Oomens, F. P. Baaijens, and J. B. Horsten, “A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin,” Skin Res. Technol., vol. 9, pp. 274-83, Aug 2003.
[61]M. A. F. Kendall, Y.-F. Chong, and A. Cock, “The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery,” Biomaterials, vol. 28, pp. 4968-4977, Aug. 2007.
[62]G. Sitterly, “Attachment and Matrix Factors”, in Biofiles, vol. 3, no. 8, St. Louis: Sigma-Aldrich, 2008, pp 1-26.
[63]Y. C. Ou, “Application of Gelatin Micropatterns in Cell Attachment, Culture and In-Situ Monitoring” Ph.D. dissertation, Dept. Electro-Mech. Eng., Tamkang Univ., Taipei, Taiwan, 2009.
[64]連成葉,“明膠的特性與銀鹽膠片的保存條件”,檔案學通訊,頁46-48,1999年7月。
[65]A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, and N. Roveri, “Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking,” Biomaterials, vol. 22, pp. 763-768, Apr. 2001.
[66]C. Peña, K. de la Caba, A. Eceiza, R. Ruseckaite, and I. Mondragon, “Enhancing water repellence and mechanical properties of gelatin films by tannin addition,” Bioresource Technol., vol. 101, pp. 6836-6842, Sep. 2010.
[67]L. J. Yang and Y. C. Ou, “The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture,” Lab Chip, vol. 5, pp. 979-984, Aug. 2005.
[68]M. Lei, Y. Gu, A. Baldi, R. Siegel, and B. Ziaie, “Soft mold-dry etch: a novel hydrogel patterning technique for biomedical applications,” in Proc. IEEE Engineering in Medicine and Biology Society Ann. Conf., San Francisco, CA, vol. 3, 2004, pp. 1983-1986.
[69]S. S. Li, J. Shi, L. Liu, J. J. Li, L. M. Jiang, C. X. Luo, et al., “Fabrication of gelatin nanopatterns for cell culture studies,” Microelectron. Eng., vol. 110, pp. 70-74, Oct. 2013.
[70]Y. Wu, Y. X. Chen, J. Yan, D. Quinn, P. Dong, S. W. Sawyer, et al., “Fabrication of conductive gelatin methacrylate-polyaniline hydrogels,” Acta Biomater., vol. 33, pp. 122-30, Mar 15 2016.
[71]D. F. Vieira, C. O. Avellaneda, and A. Pawlicka, “Conductivity study of a gelatin-based polymer electrolyte,” Electrochimica Acta, vol. 53, pp. 1404-1408, Dec. 2007.
[72]A. Ghadami, N. Taheri Qazvini, and N. Nikfarjam, “Ionic conductivity in gelatin-based hybrid solid electrolytes: The non-trivial role of nanoclay,” J. Mater. Sci. Technol., vol. 30, pp. 1096-1102, Nov. 2014.
[73]Y. Y. Chen, B. A. Chen, D. Tsai, C. C. Huang, J. Yu, W. P. Shih, et al., “Implantable probe with split anchors via residual stress and induced cell growth with gelatin nanofibres,” Micro Nano Lett., vol. 9, pp. 901-905, Oct. 2014.
[74]N. Nwe, T. Furuike, and H. Tamura, “Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginate, bacterial cellulose and gelatin,” Proc. Biochem., vol. 45, pp. 457-466, Apr. 2010.
[75]J. Y. Lai, Y. T. Li, C. H. Cho, and T. C. Yu, “Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering,” Int. J. Nanomedicine, vol. 7, pp. 1101-1114, Feb. 2012.
[76]PROCESSING GUIDELINES FOR: SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075, MicroChem Co., MA, 2016.
[77]M. Schmidt, M. Zaeh, T. Graf, A. Ostendorf, K.-H. Leitz, B. Redlingshöfer, et al., “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia, vol. 12, pp. 230-238, Jan. 2011.
[78]N. Bityurin, B. S. Luk''yanchuk, M. H. Hong, and T. C. Chong, “Models for Laser Ablation of Polymers,” Chem. Rev., vol. 103, pp. 519-552, Feb. 2003.
[79]N. Arnold and N. Bityurin, “Model for laser-induced thermal degradation and ablation of polymers,” Appl. Phys. A, vol. 68, pp. 615-625, Apr. 1999.
[80]THE MATERIAL PROPERTIES OF GELATIN GELS, Marvalaud Inc., MD, 1975.
[81]Cell Culture Basics Handbook, Thermo Fisher Scientific Inc., MA, 2016.
[82]Y. Y. Chen, “An Implantable Electrical Stimulation Probe with Bendable Split Anchors via Residual Stress” M.S. thesis, Dept. Mech. Eng., National Taiwan Univ., Taipei, Taiwan, 2015.
[83]G. Blume, W. Müller-Wichards, C. Goepfert, R. Pörtner, and J. Müller, “Electrical Stimulation of NIH-3T3 Cells with Platinum-PEDOT-Electrodes Integrated in a Bioreactor,” Open Biomed. Eng. J., vol. 7, pp. 125-132, Nov. 2013


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top