|
REFERENCE [1]The IEEE Standard Dictionary of Electrical and Electronics Terms Sixth Edition, IEEE Std. 100-1996, 1996. [2]A. J. R. Macdonald, “A brief review of the history of electrotherapy and its union with acupuncture,” Acupunct. Med., vol. 11, pp. 66-75, Nov. 1993. [3]S. H. Licht, “History of Electrotherapy,” in Therapeutic Electricity and Ultraviolet Radiation, 2nd ed. New Haven: E. Licht, 1967, pp. 1-70. [4]K. Desmond, “Paris!,” in Gustave Trouvé: French Electrical Genius 1839-1902, 1st ed., North Carolina: McFarland, 2015, pp. 14-42. [5]H. L. Jones, W. E. Steavenson, “Historical,” in Medical electricity: a practical handbook for students and practitioners, 1st ed. London: H. K. Lewis, 1892, pp. 1-11. [6]T. Watson, “Current concepts in electrotherapy,” Haemophilia, vol. 8, pp. 413-418, May 2002. [7]L. Loghavi, S. K. Sastry, and A. E. Yousef, “Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus,” Biotechnol Progr., vol. 25, pp. 85-94, Jan. 2009. [8]L. A. MacGinitie, Y. A. Gluzband, and A. J. Grodzinsky, “Electric field stimulation can increase protein synthesis in articular cartilage explants,” J Orthopaed. Res., vol. 12, pp. 151-60, Mar. 1994. [9]E. T. Wang and M. Zhao, “Regulation of tissue repair and regeneration by electric fields,” Chin. J. Traumatol., vol. 13, pp. 55-61, Feb. 2010. [10]D. F. Mayor, “Electroacupuncture in context: the effects of electrotherapy,” in Electroacupuncture: a practical manual and resource, 1st ed. New York: Elsevier, 2007, pp. 39-46. [11]G. L. Y. Cheing, E. M. L. So, and C. Y. L. Chao, “Effectiveness of electroacupuncture and interferential electrotherapy in the management of frozen shoulder,” J. Rehabil. Med., vol. 40, pp. 166-170, Mar. 2008. [12]G. Thakral, J. LaFontaine, B. Najafi, T. K. Talal, P. Kim, and L. A. Lavery. (2013, Sep.). Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle [Online]. 4, Available: http://dx.doi.org/10.3402/dfa.v4i0.22081 [13]K. H. Walter, “Electrical apparatus for cosmetic treatment of the skin,” U.S. Patent 3107672, Oct. 22, 1963. [14]R. Tiktinsky, L. Chen, and P. Narayan, “Electrotherapy: yesterday, today and tomorrow,” Haemophilia, vol. 16, pp. 126-131, Jul. 2010. [15]G. Banerjee and M. Johnson, “Transcutaneous electrical nerve stimulation (TENS): A potential intervention for pain management in India ?,” Indian J. Pain., vol. 27, pp. 132-141, Sep. 2013. [16]B. A. Simpson, “Principles of neurostimulation,” in Pain Research and Clinical Management, vol. 15, Electrical Stimulation and the Relief of pain, 1st ed. Amsterdam: Elsevier, 2003, pp. 17-36. [17]S. Pearson, A. P. Colbert, J. McNames, M. Baumgartner, and R. Hammerschlag, “Electrical skin impedance at acupuncture points,” J. Altern. Complem. Med., vol. 13, pp. 409-418, May 2007. [18]K. E. Sharquie, H. Al-Hamamy, and D. El-Yassin, “Treatment of cutaneous leishmaniasis by direct current electrotherapy: The Baghdadin device,” J. Dermatol., vol. 25, pp. 234-237, Apr. 1998. [19]R. Belmonte, M. Tejero, M. Ferrer, J. M. Muniesa, E. Duarte, O. Cunillera, and F. Escalada, “Efficacy of low-frequency low-intensity electrotherapy in the treatment of breast cancer-related lymphoedema: a cross-over randomized trial,” Clin. Rehabil., vol. 26, pp. 607-618, Jul. 2012. [20]S. Zaghi, M. Acar, B. Hultgren, P. S. Boggio, and F. Fregni, “Noninvasive Brain Stimulation with Low-Intensity Electrical Currents: Putative Mechanisms of Action for Direct and Alternating Current Stimulation,” Neuroscientist, vol. 16, pp. 285-307, Jun. 2010. [21]J. R. Bond and B. W. Barry, “Hairless mouse skin is limited as a model for assessing the effects of penetration enhancers in human skin,” J. Invest. Dermatol., vol. 90, pp. 810-3, Jun. 1988. [22]O. A. Shergold, N. A. Fleck, and D. Radford, “The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates,” Int. J. Impact Eng., vol. 32, pp. 1384-1402, Mar. 2005. [23]M. A. Bush, R. G. Miller, P. J. Bush, and R. B. Dorion, “Biomechanical factors in human dermal bitemarks in a cadaver model,” J. Forensic Sci., vol. 54, pp. 167-76, Jan. 2009. [24]M. J. Adams, B. J. Briscoe, and S. A. Johnson, “Friction and lubrication of human skin,” Tribol. Lett., vol. 26, pp. 239-253, Mar. 2007. [25]A. K. Dabrowska, G. M. Rotaru, S. Derler, F. Spano, M. Camenzind, S. Annaheim, R. Stämpfli, M. Schmid and R. M. Rossi, “Materials used to simulate physical properties of human skin,” Skin Res. Technol., vol. 22, pp. 3-14, Feb. 2016. [26]T. Bergmann, S. Beer, U. Maeder, J. M. Burg, P. Schlupp, T. Schmidts, F. Runkel, and M. Fiebich, “Development of a skin phantom of the epidermis and evaluation by using fluorescence techniques,” in 2011 Proc. SPIE, CA, 2011, pp. T1-T9. [27]S. Nebuya, M. Noshiro, B. H. Brown, R. H. Smallwood, and P. Milnes, “Detection of emboli in vessels using electrical impedance measurements - phantom and electrodes,” Physiol. Meas., vol. 26, pp. S111-S118, Apr. 2005. [28]T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE T. Ultrason. Ferr., vol. 44, pp. 1355-1365, Nov. 1997. [29]M. Groβe Perdekamp, S. Pollak, A. Thierauf, E. Straβburger, M. Hunzinger, and B. Vennemann, “Experimental simulation of reentry shots using a skin-gelatine composite model,” Int. J. Legal Med., vol. 123, pp. 419-25, Sep. 2009. [30]R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol., vol. 42, pp. 1971-1979, Oct. 1997. [31]N. Chahat, M. Zhadobov, R. Sauleau, and S. I. Alekseev, “New Method for Determining Dielectric Properties of Skin and Phantoms at Millimeter Waves Based on Heating Kinetics,” IEEE T. Microw. Theory, vol. 60, pp. 827-832, Mar. 2012. [32]J. Jachowicz, R. McMullen, and D. Prettypaul, “Indentometric analysis of in vivo skin and comparison with artificial skin models,” Skin Res. Technol., vol. 13, pp. 299-309, Aug. 2007. [33]H. S. Yoo, Y. S. Hu, and E. A. Kim, “Effects of Heat and Moisture Transport in Fabrics and Garments Determined with a Vertical Plate Sweating Skin Model,” Textile Res. J., vol. 70, pp. 542-549, Jun. 2000. [34]F.-M. Wang, C.-S. Gao, K. Kuklane, and I. Holmér, “A Study on Evaporative Resistances of Two Skins Designed for Thermal Manikin Tore under Different Environmental Conditions,” J Fiber Bioeng. Inform., vol. 1, pp. 301-306, Mar. 2009. [35]M. Ponec, “Skin constructs for replacement of skin tissues for in vitro testing,” Adv. Drug Deliv. Rev., vol. 54 suppl. 1, pp. S19-S30, Nov. 2002. [36]“Seventh Amendment to the EU Cosmetics Directive 76/768/EEC,” in The European Parliament and the Council of the European Union, European Union, 2003. [37]F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-Layland, “Skin tissue engineering — In vivo and in vitro applications,” Adv. Drug Deliv. Rev., vol. 63, pp. 352-366, Apr. 2011. [38]J. Jean, M. Lapointe, J. Soucy, and R. Pouliot, “Development of an in vitro psoriatic skin model by tissue engineering,” J. Dermatol. Sci., vol. 53, pp. 19-25, Jan. 2009. [39]C. A. Harrison, C. M. Layton, Z. Hau, A. J. Bullock, T. S. Johnson, and S. MacNeil, “Transglutaminase inhibitors induce hyperproliferation and parakeratosis in tissue-engineered skin,” Brit. J. Dermatol., vol. 156, pp. 247-57, Feb. 2007. [40]F. Netzlaff, C. M. Lehr, P. W. Wertz, and U. F. Schaefer, “The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport,” Eur. J. Pharm. Biopharm., vol. 60, pp. 167-178, Mar. 2005. [41]S. Grimnes and Ø. G. Martinsen, “Passive tissue electrical properties,” in Bioimpedance and Bioelectricity Basics, 2nd ed., New York: Academic Press, 2008, pp. 93-137. [42]M. MacDonald, “Skin: Your Outer Layer,” in Your Body: The Missing Manual, 1st ed., Sebastopol: O''Reilly Media, 2009, pp. 7-30. [43]J. Sandby-Mφller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta. Derm. Venereol., vol. 83, pp. 410-413, Jun. 2003. [44]R. M. Marks, A. G. Knight, P. Laidler, “Normal Skin,” in Atlas of Skin Pathology, 1st ed., Berlin: Springer, 1986, pp. 17-24. [45]C. Pailler-Mattei, S. Bec, and H. Zahouani, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Med. Eng. Phys., vol. 30, pp. 599-606, Jun. 2007. [46]K. Wilke, A. Martin, L. Terstegen, and S. S. Biel, “A short history of sweat gland biology,” Int. J. Cosmetic Sci., vol. 29, pp. 169-179, Mar. 2007. [47]V. Minor, “Ein neues Verfahren zu der klinischen Untersuchung der Schweißabsonderung,” Dtsch. Z. Nervenheilkd., vol. 101, pp. 302-308, Jan. 1928. [48]F. Piotr, Ł. Piotr, and W. Jan M, “Monitoring of Sweat Secretion from Eccrine Sweat Glands Using Electric Conductivity Method,” Biocybern. Biomed. Eng., vol. 32, pp. 47-57, 2012. [49]A. C. Allenby, J. Fletcher, C. Schock, and T. F. S. Tees, “The Effect of heat, pH and organic solvents on the electrical impedance and permeability of excised human skin,” Brit. J. Dermatol., vol. 81 suppl. 4, pp. 31-39, Aug. 1969. [50]A. Barnett, “The phase angle of normal human skin,” J. Physiol., vol. 93, pp. 349-366, May 1938. [51]W. G. S. Stephens, “The current-voltage relationship in human skin,” Med. Electron. Biol. Eng., vol. 1, pp. 389-399, Apr. 1963. [52]S. I. Bîrlea, N. M. Bîrlea, P. P. Breen, and G. ÓLaighin, “Identifying skin electrical properties using a standard neuromuscular electrical stimulation voltage pulse,” in Signals and Systems Conf., Galway, Irish, 2008, pp. 56-59. [53]S. J. Dorgan and R. B. Reilly, “A model for human skin impedance during surface functional neuromuscular stimulation,” IEEE Trans. Rehabil. Eng., vol. 7, pp. 341-8, Sep. 1999. [54]E. F. Prokhorov, J. González-Hernández, Y. V. Vorobiev, E. Morales-Sánchez, T. E. Prokhorova, and G. Z. Lelo de Larrea, “In vivo electrical characteristics of human skin, including at biological active points,” Med. Biol. Eng. Comput., vol. 38, pp. 507-511, Jun. 2000. [55]E. Spinelli and M. Haberman, “Insulating electrodes: a review on biopotential front ends for dielectric skin-electrode interfaces,” Physiol. Meas., vol. 31, pp. S183-S198, Oct. 2010. [56]Putnam, William, and R. Benjamin Knapp (1996, Oct.) Input/Data Acquisition System Design for Human Computer Interfacing. Stanford, CA. [Online]. Available: http://ccrma.stanford.edu/CCRMA/Courses/252/sensors/sensors.html [57]P. G. Agache, C. Monneur, J. L. Leveque, and J. De Rigal, “Mechanical properties and Young''s modulus of human skin in vivo,” Arch. Dermatol. Res., vol. 269, pp. 221-232, Dec. 1980. [58]J. F. Manschot and A. J. Brakkee, “The measurement and modelling of the mechanical properties of human skin in vivo - II. The model,” J. Biomech., vol. 19, pp. 517-21, Oct. 1985. [59]S. Diridollou, F. Patat, F. Gens, L. Vaillant, D. Black, J. M. Lagarde, et al., “In vivo model of the mechanical properties of the human skin under suction,” Skin Res. Technol., vol. 6, pp. 214-221, Nov. 2000. [60]F. M. Hendriks, D. Brokken, J. T. van Eemeren, C. W. Oomens, F. P. Baaijens, and J. B. Horsten, “A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin,” Skin Res. Technol., vol. 9, pp. 274-83, Aug 2003. [61]M. A. F. Kendall, Y.-F. Chong, and A. Cock, “The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery,” Biomaterials, vol. 28, pp. 4968-4977, Aug. 2007. [62]G. Sitterly, “Attachment and Matrix Factors”, in Biofiles, vol. 3, no. 8, St. Louis: Sigma-Aldrich, 2008, pp 1-26. [63]Y. C. Ou, “Application of Gelatin Micropatterns in Cell Attachment, Culture and In-Situ Monitoring” Ph.D. dissertation, Dept. Electro-Mech. Eng., Tamkang Univ., Taipei, Taiwan, 2009. [64]連成葉,“明膠的特性與銀鹽膠片的保存條件”,檔案學通訊,頁46-48,1999年7月。 [65]A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, and N. Roveri, “Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking,” Biomaterials, vol. 22, pp. 763-768, Apr. 2001. [66]C. Peña, K. de la Caba, A. Eceiza, R. Ruseckaite, and I. Mondragon, “Enhancing water repellence and mechanical properties of gelatin films by tannin addition,” Bioresource Technol., vol. 101, pp. 6836-6842, Sep. 2010. [67]L. J. Yang and Y. C. Ou, “The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture,” Lab Chip, vol. 5, pp. 979-984, Aug. 2005. [68]M. Lei, Y. Gu, A. Baldi, R. Siegel, and B. Ziaie, “Soft mold-dry etch: a novel hydrogel patterning technique for biomedical applications,” in Proc. IEEE Engineering in Medicine and Biology Society Ann. Conf., San Francisco, CA, vol. 3, 2004, pp. 1983-1986. [69]S. S. Li, J. Shi, L. Liu, J. J. Li, L. M. Jiang, C. X. Luo, et al., “Fabrication of gelatin nanopatterns for cell culture studies,” Microelectron. Eng., vol. 110, pp. 70-74, Oct. 2013. [70]Y. Wu, Y. X. Chen, J. Yan, D. Quinn, P. Dong, S. W. Sawyer, et al., “Fabrication of conductive gelatin methacrylate-polyaniline hydrogels,” Acta Biomater., vol. 33, pp. 122-30, Mar 15 2016. [71]D. F. Vieira, C. O. Avellaneda, and A. Pawlicka, “Conductivity study of a gelatin-based polymer electrolyte,” Electrochimica Acta, vol. 53, pp. 1404-1408, Dec. 2007. [72]A. Ghadami, N. Taheri Qazvini, and N. Nikfarjam, “Ionic conductivity in gelatin-based hybrid solid electrolytes: The non-trivial role of nanoclay,” J. Mater. Sci. Technol., vol. 30, pp. 1096-1102, Nov. 2014. [73]Y. Y. Chen, B. A. Chen, D. Tsai, C. C. Huang, J. Yu, W. P. Shih, et al., “Implantable probe with split anchors via residual stress and induced cell growth with gelatin nanofibres,” Micro Nano Lett., vol. 9, pp. 901-905, Oct. 2014. [74]N. Nwe, T. Furuike, and H. Tamura, “Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginate, bacterial cellulose and gelatin,” Proc. Biochem., vol. 45, pp. 457-466, Apr. 2010. [75]J. Y. Lai, Y. T. Li, C. H. Cho, and T. C. Yu, “Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering,” Int. J. Nanomedicine, vol. 7, pp. 1101-1114, Feb. 2012. [76]PROCESSING GUIDELINES FOR: SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075, MicroChem Co., MA, 2016. [77]M. Schmidt, M. Zaeh, T. Graf, A. Ostendorf, K.-H. Leitz, B. Redlingshöfer, et al., “Metal Ablation with Short and Ultrashort Laser Pulses,” Phys. Procedia, vol. 12, pp. 230-238, Jan. 2011. [78]N. Bityurin, B. S. Luk''yanchuk, M. H. Hong, and T. C. Chong, “Models for Laser Ablation of Polymers,” Chem. Rev., vol. 103, pp. 519-552, Feb. 2003. [79]N. Arnold and N. Bityurin, “Model for laser-induced thermal degradation and ablation of polymers,” Appl. Phys. A, vol. 68, pp. 615-625, Apr. 1999. [80]THE MATERIAL PROPERTIES OF GELATIN GELS, Marvalaud Inc., MD, 1975. [81]Cell Culture Basics Handbook, Thermo Fisher Scientific Inc., MA, 2016. [82]Y. Y. Chen, “An Implantable Electrical Stimulation Probe with Bendable Split Anchors via Residual Stress” M.S. thesis, Dept. Mech. Eng., National Taiwan Univ., Taipei, Taiwan, 2015. [83]G. Blume, W. Müller-Wichards, C. Goepfert, R. Pörtner, and J. Müller, “Electrical Stimulation of NIH-3T3 Cells with Platinum-PEDOT-Electrodes Integrated in a Bioreactor,” Open Biomed. Eng. J., vol. 7, pp. 125-132, Nov. 2013
|