跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃承緯
研究生(外文):Cheng-Wei Huang
論文名稱:鐵氟龍毛細結構應用於平板型迴路式熱管之研究
論文名稱(外文):The Study of PTFE Wick Structure Applied to Flat Plate Loop Heat Pipe
指導教授:陳瑤明
口試委員:吳聖俊林芳州
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:氣冷平板型迴路式熱管熱洩漏鐵氟龍
外文關鍵詞:air-cooled flat-plate loop heat pipeheat leakageTeflon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
迴路式熱管為一種具相變化的被動熱傳裝置,相較於傳統熱管,其優點有:遠距熱傳輸、低熱阻與高熱傳量等。影響迴路式熱管表現的關鍵在於毛細結構。鎳因其具有多樣化工質的相容性和較低的熱傳導係數,普遍運用在現今的迴路式熱管,取代傳統的銅毛細結構。近年電子元件功率密度提高,單位密度所需處理的熱逐漸上升,造成金屬毛細結構難以抵擋熱洩漏的問題,尋找熱傳導係數更低的毛細結構為新的研究課題。非金屬的鐵氟龍(PTFE)毛細結構,具有更低的熱傳導係數和良好的可塑性,近年有日本學者[20]嘗試應用至迴路式熱管。
本研究嘗試設計並建立氣冷平板型迴路式熱管應用於熱電晶片上,熱電晶片目標散熱瓦數為85W,操作溫度需低於100℃,熱阻要小於0.5K/W,並有傳輸距離上的限制。藉由熱傳性能測試改善冷凝段長度、鰭片之設計,並改變工作流體填充量、毛細結構,來尋找符合熱電晶片需求散熱瓦數的氣冷平板型迴路式熱管之設計,且達到低操作溫度、低熱阻的目標。
在實驗方面,經計算與實驗測試發現,最適當的冷凝段長度為250mm,工作流體填充量為整體迴路式熱管體積的60%。於適當的參數下,以鐵氟龍毛細結構於氣冷平板型迴路式熱管中進行熱傳性能測試,在熱電晶片目標散熱瓦數85W下,其操作溫度達58℃,系統熱阻為0.38 K/W,補償室溫度為28℃。與金屬毛細結構比較,鎳和銅毛細結構在85W下操作溫度分別為75℃和79℃,熱阻為0.58K/W和0.63K/W,補償室溫度為39℃和45℃,鐵氟龍毛細結構皆有較好的熱傳性能。
總結本研究之成果,本研究成功建立氣冷平版型迴路式熱管,並使用鐵氟龍作為毛細結構,能有效的降低操作溫度和熱阻並成功的阻擋熱洩漏。與金屬毛細結構相比,有製程較為安全、製造成本較低、較好加工等優點,對於未來高功率元件的冷卻而言,鐵氟龍毛細結構有高度應用之潛力。


Loop heat pipe, compared to a conventional heat pipe, is a passive phase change, heat transfer device having the advantages of long-distance heat transfer, low thermal resistance and high heat transfer capacity etc. The key point of it is the wick structure.
Because of its wide-range compatibility of working fluid and low thermal conductivity coefficient, as a wick material, nickel can replace copper using in loop heat pipe nowadays. In recent years, the power density of electronic components rises with thermal processing required per unit density gradually increased, causing metal wick structures hard to resist heat leakage, which becomes a new researching issue. Non-metallic wick structure- Teflon (PTFE), has a low thermal conductivity coefficient and good plasticity, so Japanese scholars in recent years [20] attempts to apply PTFE to the loop-type heat pipe.
This study attempts to design and build air-cooling flat-plate loop heat pipe used in thermoelectric wafer with the target thermoelectric cooling wattage of 85W, operating temperature below 100℃ and the thermal resistance less than 0.5K/W. By the thermal performance test, this this study not only improve the condenser length and fin design, but also change the material of wick structure and the amount of working fluid filled in that, in order to find the proper air-cooling flat-plate loop heat pipe and achieve low operating temperature with low thermal resistance target.
Based on the result of experiments, after calculating and testing, it goes that it is the best cooling length of 250mm; the working fluid is filled 60% of the total volume of the loop heat pipe. Under these parameters, this study uses Teflon wick structure as heat-transfer-performance tests on air-cooling flat-plate loop heat pipe. With target wattage 85W, its operating temperature is of 58℃, the system thermal resistance of 0.38 K/W, the compensation chamber temperature of 28℃. Compared with the metal wick structure like nickel and copper at 85W, they have the operating temperatures of 75℃ and 79℃ separately, thermal resistance 0.58K/W and 0.63K/W, the compensation chamber temperature of 39℃ and 45℃.The Teflon wick structure has better heat transfer performance from above.
Summarize the results; this study successfully established air-cooling flat-plate loop heat pipe, and using Teflon as wick structures, which effectively reduce the operating temperature and the thermal resistance without heat leakage. Compared to metal wick structures, Teflon wick structures have lower manufacturing costs, better processing, etc. Moreover, the Teflon wick structures have high potential of high-power cooling element in the future.


誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
符號說明 xv
第一章 緒論 1
1-1 前言 1
1-1.1 熱管 2
1-1.2 毛細泵吸環路 2
1-1.3 迴路式熱管 4
1-2 文獻回顧 6
1-2.1 迴路式熱管文獻回顧 6
1-2.2 平板迴路式熱管文獻回顧 7
1-2.3 氣冷迴路式熱管文獻回顧 7
1-2.4 高分子毛細結構運用於迴路式熱管文獻回顧 8
1-3 研究目的 10
第二章 迴路式熱管操作原理與理論分析 11
2-1 迴路式熱管基本原理 11
2-2 迴路式熱管操作限制 13
2-2.1 毛細限制 13
2-2.2 啟動限制 14
2-2.3 液體過冷限制 14
2-3 工作流體填充量與補償室尺寸 15
2-3.1 工作流體填充量 15
2-3.2 補償室尺寸 15
2-4 迴路式熱管熱阻分析 16
2-4.1 蒸發器熱阻 16
2-4.2 蒸氣段熱阻 17
2-4.3 冷凝器熱阻 17
2-5 鰭片之分析 18
2-6 熱洩漏量之分析 18
第三章 實驗設備與方法 22
3-1 氣冷平板型迴路式熱管應用於熱電晶片之規格限制 22
3-2 實驗材料 23
3-3 實驗設備 26
3-3.1 毛細結構製作設備 26
3-3.2 毛細結構參數量測設備 27
3-2.3 迴路式熱管熱傳性能測試設備 28
3-4毛細結構之製作 30
3-5毛細結構參數量測方法 32
3-4.1 有效孔徑 32
3-4.2 孔隙度 33
3-4.3 滲透度 34
3-6 迴路式熱管測試步驟與性能評估 35
3-6.1 迴路式熱管安裝步驟 35
3-6.2 熱傳性能測試步驟 35
3-6.3 迴路式熱管熱傳性能評估 35
3-7 迴路式熱管系統參數 36
3-8 誤差分析 37
第四章 結果與討論 38
4-1 金屬與鐵氟龍毛細結構 39
4-2 氣冷平板型迴路式熱管之參數評估 41
4-2.1 冷凝段長度探討 41
4-2.2 工作流體填充量探討 42
4-3 氣冷平板型迴路式熱管測試結果 43
4-4與國外平版型迴路式熱管之比較 46
4-5鐵氟龍毛細結構之優勢 49
第五章 結論與建議 52
5-1 結論 52
5-2 建議 53
參考文獻 54
附錄 57


[1]Gerasimov Y. F., Chogolev G. T., and Maydanik Y. F., “Heat Pipe,” USSR Inventor''s Certificate #449213, 1974.
[2]Maydanik Y. F., Vershinin S. V., Kholodov V. F., and Dolgrev Y. E., “Heat Transfer Apparatus,” U.S. Patent 4515209, 1984.
[3]Maydanik Y. F., Fershtater Y. G., and V. G. Pastukhov, “Loop Heat Pipes: Development, Investigation and Elements of Engineering Calculations,” Ural Division of the USSR Academy of Sciences, 1989.
[4]Gernert, Nelson J., Gregg J. Baldassarre, and Joseph M. Gottschlich. Fine pore loop heat pipe wick structure development. No. 961319. SAE Technical Paper, 1996.
[5]Hoang, Triem T., et al. "Miniature loop heat pipes for electronic cooling." ASME 2003 International Electronic Packaging Technical Conference and Exhibition. American Society of Mechanical Engineers, 2003.
[6]Maydanik, Y. F., ”Loop heat pipes,” Applied Thermal Engineering, 25(5), 635-657, 2005.
[7]Launay, Stéphane, and Martial Vallée. "State-of-the-art experimental studies on loop heat pipes." Frontiers in Heat Pipes (FHP) 2.1 (2011).
[8]Siedel, Benjamin, Valérie Sartre, and Frédéric Lefèvre. "Literature review: Steady-state modelling of loop heat pipes." Applied Thermal Engineering 75 (2015): 709-723.
[9]Monti, Rodolfo, ed. Physics of fluids in microgravity. CRC Press, 2002.
[10]Maidanik, Yu F., S. V. Vershinin, and M. A. Chernysheva. Development and tests of miniature loop heat pipe with a flat evaporator. No. 2000-01-2491. SAE Technical Paper, 2000.
[11]Delil, A. A. M., and V. Baturkin. Miniature loop heat pipe with a flat evaporator-Thermal modelling & Experimental results. NLR-TP-2002-273, 2002.
[12]Pastukhov, V. G., et al. "Miniature loop heat pipes for electronics cooling."Applied Thermal Engineering 23.9 (2003): 1125-1135.
[13]Maydanik, Yu F., M. A. Chernysheva, and V. G. Pastukhov. "Review: loop heat pipes with flat evaporators." Applied Thermal Engineering 67.1 (2014): 294-307.
[14]Maydanik, Yury F., Vladimir G. Pastukhov, and Mariya A. Chernysheva. "Development and Investigation of a Miniature Copper-Acetone Loop Heat Pipe with a Flat Evaporator." Journal of Electronics Cooling and Thermal Control5.04 (2015): 77.
[15]Baker, Charles L., Walter B. Bienert, and Amon S. Ducao. Loop heat pipe flight experiment. No. 981580. SAE Technical Paper, 1998.
[16]Ku, Jentung, et al. Investigation of low power operation in a loop heat pipe. No. 2001-01-2192. SAE Technical Paper, 2001.
[17]Deiii, A. A. M., Yu F. Maydanik, and C. Gerhart. Development of different novel loop heat pipes within the ISTC-1360 project. No. 2003-01-2383. SAE Technical Paper, 2003.
[18]Tsai, Meng-Chang, Chun-Sheng Yu, and Shung-Wen Kang. "Flat plate loop heat pipe with a novel evaporator structure." Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.. IEEE, 2005.
[19]Pastukhov, Vladimir G., and Yury F. Maydanik. "Low-noise cooling system for PC on the base of loop heat pipes." Applied Thermal Engineering 27.5 (2007): 894-901.
[20]Singh, Randeep, Aliakbar Akbarzadeh, and Masataka Mochizuki. "Operational characteristics of a miniature loop heat pipe with flat evaporator." International Journal of Thermal Sciences 47.11 (2008): 1504-1515.
[21]Singh, R., Akbarzadeh, A., and Mochizuki, M., 2010, “Operational characteristics
of the miniature loop heat pipe with non-condensable gases,” International Journal of Heat and Mass Transfer, 53(17-18), 3471–3482,
[22]Boo, Joon Hong, and Won Bok Chung. "Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick." Journal of mechanical science and technology 19.4 (2005): 1052-1061.
[23]Adoni, Abhijit A., et al. "Effects of mass of charge on loop heat pipe operational characteristics." Journal of Thermophysics and Heat Transfer 23.2 (2009): 346-355.
[24]Nagano, Hosei, and Masahito Nishigawara. "Small loop heat pipe with plastic wick for electronics cooling." Japanese Journal of Applied Physics 50.11S (2011): 11RF02.
[25]Nagano, Hosei, et al. "Effect of amount of fluid charge in thermal performance of loop heat pipe." Heat Transfer—Asian Research 39.6 (2010): 355-364.
[26]Nishikawara, Masahito, et al. "Numerical Study of Thermal Performance of a Capillary Evaporator in a Loop Heat Pipe with Liquid-Saturated Wick." Journal of Electronics Cooling and Thermal Control 4.04 (2014): 118.
[27]Okutani, Sho, et al. "Operating characteristics of multiple evaporators and multiple condensers loop heat pipe with polytetrafluoroethylene wicks." Journal of Electronics Cooling and Thermal Control 2014 (2014).
[28]Brandrup, J., Immergut, E. H., Abe, A., & Bloch, D. R. (Eds.)., “Polymer handbook,” New York: Wiley, 1999.
[29]Kaya, Tarik, and Triem T. Hoang. "Mathematical modeling of loop heat pipes and experimental validation." Journal of Thermophysics and Heat Transfer 13.3 (1999): 314-320.
[30]Tracey, V. A. "Pressing and sintering of nickel powders." International Journal of Powder Metallurgy and Powder Technology 20 (1984): 281.
[31]Stonard, Michael D., and Michael Webb. "Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat."Chemico-biological interactions 15.4 (1976): 349-363..
[32]“Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearings,” Annual Book of ASTM Standards, Vol.02.05, May, 2005.
[33]Wu, Shen-Chun, et al. "Effect of sintering temperature curve in wick manufactured for loop heat pipe." World Academy of Science, Engineering and Technology 62 (2012): 631-636.
[34]Moffat, Robert J. "Describing the uncertainties in experimental results."Experimental thermal and fluid science 1.1 (1988): 3-17.
[35]New and Renewable Energy Technology in Advanced Research and Development—Research Project of the Innovative Hybrid Solar Power Generation Module Technology(2016), Metal Industries Research & Development Centre.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top