跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊傑
研究生(外文):Chieh Yang
論文名稱:應用電磁與熱傳模擬於電動車感應馬達改良設計
論文名稱(外文):An Improved Design of Induction Motor for EV with Electromagnetic and Thermal Simulation
指導教授:鄭榮和
口試委員:呂百修李綱
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:感應馬達電動車磁路散熱馬達設計
外文關鍵詞:induction motorelectric vehiclemagnetic circuitcoolingelectric vehiclemotor design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以改良電動車感應馬達的連續工作能力作為研究主軸,並同時以減少發熱量和增加散熱能力兩個方法進行。減少發熱量的方法是以磁路改良來提高效率,在不更動馬達大多數幾何尺寸下,依序改變繞線節距、定子、轉子槽形的參數進行效率分析,找到效率最佳的參數值作為磁路改良設計方案。增加散熱能力的方法則是先以熱路模型軟體建立熱傳模型來討論馬達散熱的改良方向,之後針對冷卻水與內部空氣的流場進行分析與改良設計,比較哪種水道有較好的散熱能力,並為內部空氣設計新的散熱途徑,將空氣的熱量能夠直接傳至水套。最後要將磁路與散熱的改良設計結合,並加入會因溫度變化的電阻值來分析效率,得到馬達在連續工作三十分鐘後的溫升大小與平均效率,由此找出馬達在多大的功率下能連續工作三十分鐘,證明改良後的馬達連續工作能力確有提升。

The purpose of this study is to improve the continuous operation ability of induction motor for electric vehicle. To achieve this, we tried reducing heat sources and increasing heat dissipation at the same time. To reduce heat sources without changing most of the geometry of the motor, the magnetic circuit was optimized to increase efficiency. We adjusted the parameters of winding pitch, stator and rotor slot shapes sequentially and find out the combination of parameter values with the highest efficiency as a magnetic circuit optimization solution. To increase the heat dissipation, we used a lumped-circuit thermal model software to create a heat transfer model of the motor to investigate the strategies to improve motor cooling. One the one hand, we improved the design for the flow fields of cooling water to figure out the water channel form with better cooling ability. On the other hand, we designed a new cooling path for internal air that can directly transfer heat from air to the water jacket. Finally, we integrated the design with the optimized magnetic circuit and motor cooling and analyzed efficiency in consideration of temperature-dependent resistance. We obtained the temperature rise and the average efficiency of the motor operating for 30 minutes continuously. Thus, we found out the maximal power with which the motor can operate continuously for 30 minutes. To conclude, the continuous operation ability of the improved motor design was indeed promoted.

目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
1.3 研究工具介紹 4
第二章 理論背景與文獻回顧 5
2.1 感應馬達 5
2.1.1 基本構造 6
2.1.2 動力特性 8
2.1.3 等效電路 11
2.1.4 損失與效率 12
2.2 馬達散熱 17
2.2.1 溫升 18
2.2.2 熱傳遞方式 19
2.3 文獻回顧 21
2.3.1 馬達磁路設計 22
2.3.2 馬達散熱分析 24
2.3.3 馬達電磁熱之相互影響 27
2.3.4 小結 28
第三章 馬達磁路分析與改良 29
3.1 RMXPRT特性分析 31
3.1.1 模型建立 31
3.1.2 輸出性能分析 33
3.1.3 電路與磁路參數分析 34
3.2 MAXWELL 2D性能分析 37
3.2.1 模型建立 37
3.2.2 轉矩與損失分析 41
3.2.3 磁路分佈分析 46
3.2.4 磁路分析小結 50
3.3 磁路改良 51
3.3.1 繞線節距比較 51
3.3.2 定子槽形改良 54
3.3.3 轉子槽形改良 57
3.3.4 轉子內徑比較 59
3.4 磁路改良成果 61
第四章 熱傳分析與散熱改良 62
4.1 馬達熱傳模型建立 63
4.2 散熱增強方式探討 68
4.2.1 熱傳導 68
4.2.2 熱對流 70
4.2.3 熱輻射 72
4.2.4 散熱增強方式分析小結 73
4.3 流場分析與改良 74
4.3.1 流場模型前處理 75
4.3.2 水套散熱分析與比較 77
4.3.3 內部空氣流場分析與改良 82
4.4 散熱改良成果 87
4.5 內部空氣流場改良之風扇長度參數分析 88
第五章 馬達連續工作性能分析 90
5.1 效率與溫升關係 90
5.1.1 分析方法建立 90
5.1.2 馬達原型與改良設計效率比較 91
5.2 馬達連續工作功率分析 92
第六章:結論與未來方向 93
6.1 研究成果 93
6.2 未來趨勢與改進方向 94
參考文獻 95

[1]李名揚, “在台灣,電動車較優,” 科學人雜誌, 第107期1月號, 2011
[2]I. Boldea and S. A. Nasar, The Induction Machines Design Handbook, CRC Press, 2009.
[3]W. Tong, Mechanical Design of Electric Motors, CRC Press, 2014.
[4]V. Maurel, F. Ossart and R. Billardon, “Residual stresses in punched laminations: Phenomenological analysis and influence on the magnetic behavior of electrical steels,” J. Appl. Phys., vol. 93, no. 10, pp. 7106-7108, 2003.
[5]D. A. Howey, P. R. N. Childs and A. S. Holmes, “Air-Gap Convection in Rotating Electrical Machines,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1367-1375, 2012.
[6]S. Seghir-Ouali, D. Saury, S. Harmand, O. Phillipart and D. Laloy, “Convective heat transfer inside a rotating cylinder with an axial air flow,” Int. J. Therm. Sci., vol. 45, no. 12, pp. 1166-1178, 2006.
[7]R. Saidur, “A review on electrical motors energy use and energy savings,” Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 877-898, 2010.
[8]H. G. Reist, “Cooling dynamo-electric machines,” US Patent 716278 A, 1901.
[9]J. Pyrhonen, T. Jokinen and V. Hrabovcova, Design of Rotating Electrical Machines, Wiley, 2007
[10]Z. Q. Zhu and D. Howe, “Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles,” Proc. IEEE, vol. 95, no. 4, pp.746-765, 2007.
[11]M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[12]H. Murakami, Y. Honda, Y. Sadanaga, Y. Ikkai, S. Morimoto and Y. Takeda, “Optimum design of highly efficient magnet assisted reluctance motor,” Conf. Rec. of the 2001 IEEE Thirty-Sixth IAS Annual Meeting, vol. 4, 2001.
[13]S. Ooi, S. Morimoto, M. Sanada and Y. Inoue, “Performance evaluation of a high power density PMASynRM with ferrite magnets,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 4195-4200, 2011.
[14]M. Burwell, J. Goss and M. Popescu, “Performance/cost comparison of induction-motor & permanent-magnet-motor in a hybrid electric car,” International Copper Association, Tokyo, 2013,
[15]T. A. Baudendistel and M. L. Turner, “A Novel Inverse-Magnetostrictive Force Sensor,” IEEE Sensors Journal, vol. 7, no. 2, pp. 245-250, 2007.
[16]K. Y. Jeong, C. H. Park and C. S. Koh, “Comparison of iron loss at different manufacturing process of actual stator core,” International Conference on Electrical Machines and Systems, Busan, 2013.
[17]M. Yabumoto, C. Kaido, T. Wakisaka, T. Kubota and N. Suzuki, “Electrical steel sheet for traction motors of hybrid/electric vehicles,” Nippon steel technical report, no.87, 2003
[18]S. Jurkovic, J. C. Morgante, K. M. Rahman and P. J. Savagian, “Electric machine design and selection for General Motors e-Assist Light Electrification Technology,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 906-913, 2012.
[19]K. W. Jeon, T. K. Chung and S. C. Hahn, “NEMA class a slot shape optimization of induction motor for electric vehicle using response surface method,” International Conference Electrical Machines and Systems, Beijing, 2011.
[20]Y. Li, S. Li and B. Sarlioglu, “Analysis of pulsating torque in squirrel cage induction machines by investigating stator slot and rotor bar dimensions for traction applications,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 246-253, 2013.
[21]A. Boglietti, R. Bojoi, A. Cavagnino, P. Guglielmi and A. Miotto, “Analysis and modeling of rotor slot enclosure effects in high speed induction motors,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 154-161, 2011.
[22]K. Yamazaki, Y. Haruishi and T. Ara, “Calculation of negative torque caused by slot ripples of induction motors,” IEEE Trans. Magn., vol. 40, no. 2, pp. 778-781, 2004.
[23]W. G. Kim, J. I. Lee, K. W. Kim, Y. S. Kim and C. D. Lee, “The temperature rise characteristic analysis technique of the traction motor for EV application,” International Forum on Strategic Technology, Ulsan, 2006.
[24]S. Seghir-Oualil, S.Harmand, D. Laloy, “Study of the thermal behavior of a synchronous motor with permanent magnets,” International Journal of Engineering, vol. 3, no. 3, pp. 229-256, 2009.
[25]Y. Shen and C. Jin, “Water cooling system analysis of permanent magnet traction motor of mining electric-drive dump truck,” SAE Technical Paper 2014-01-0662, 2014.
[26]Y. Zhang, J. Ruan, T. Huang, X. Yang, H. Zhu and G. Yang, “Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite-element analysis,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1047-1050, 2012.
[27]M. Tosetti, P. Maggiore, A. Cavagnino and S. Vaschetto, “Conjugate heat transfer analysis of integrated brushless generators for more electric engines,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 1518-1525, 2013.
[28]S. Noda, S. Mizuno, T. Koyama and S. Shiraishi, “Development of a totally enclosed fan cooled traction motor,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 272-277, 2010.
[29]J. E. Cousineau, K. Bennion, D. DeVoto, M. Mihalic and S. Narumanchi, “Characterization of contact and bulk thermal resistance of laminations for electric machines,” NREL Technical Report NREL/TP-5400-63887, 2015.
[30]K. Bennion, “Electric motor thermal management,” National Renewable Energy Laboratory, 2012.
[31]H. Y. Chang and Y. P. Yang, “Coupled electromagnetic and thermal-fluid analysis for a permanent magnet synchronous motor,” International Conference on Advances in Mechanical and Robotics Engineering, 2014.
[32]N. Takahashi, M. Morishita, D. Miyagi and M. Nakano, “Comparison of magnetic properties of magnetic materials at high temperature,” IEEE Trans. Magn., vol.47, no.10, pp. 4352-4355, 2011.
[33]C. J. Wu, S. Y. Lin, S. C. Chou, C. Y. Tsai and J. Y. Yen, “Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame,” The Scientific World Journal, vol. 2014, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top