跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥瑋
研究生(外文):Yen-Wei Lin
論文名稱:膠體粒子表面電位量測與粒子之自電泳
論文名稱(外文):Measurement of Surface Potential and Self-electrophoresis of Colloidal Particles
指導教授:江宏仁
口試委員:李雨陳志強
口試日期:2015-11-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:自電泳界達電位非對稱粒子
外文關鍵詞:self-electrophoresiszeta potentialJanus particle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,科學家已經能藉由設計膠體粒子表面性質或施加外加場來使控制粒子的移動或是組裝,且現在我們可以利用這些科技來完成如藥物輸送或是自組裝等目的。相較於討論已久的熱泳、電泳等物質輸送現象,具有白金的非對稱粒子在雙氧水溶液中的自泳動現象在最近也有許多相關研究。為了理解這個將化學能轉化為動能的運動現象,許多團隊分別提出了不同的運動模型來解釋它。然而,這些模型的理論與實驗結果皆有些互相衝突之處而無法被完全解釋之處,因此我們對於粒子表面性質與運動的部分設計做了一些實驗,來幫助我們更了解此現象之運動機制。
在本實驗中,我們利用界面活性劑與氨基矽烷改變粒子表面電性,從結果中發現到粒子運動速度的與界達電位呈線性關係,並且粒子的電位正負號也決定了粒子之運動方向。對於此結果,我們提出自電泳的運動模型來嘗試解釋粒子的泳動現象,並推測粒子之表面電位與粒子運動之關係。我們也利用氧化銦錫玻璃建立一個量測單顆粒子表面電位的實驗裝置,來幫助我們得到Janus粒子的界達電位。另外,從電場下粒子的電偶極實驗結果,也顯示與自電泳模型相似的結果。從這些實驗結果中,我們推測非對稱粒子在雙氧水溶液中具有電偶極性質與粒子運動速度與表面性質有關的結論。


Nowadays, scientists are able to control the motion and assembly of colloidal particles by designing their surface properties or applying external fields on them. People now can use these modern technologies to achieve some purposes, such as drug delivery or self-assembly. Comparing with some traditional phenomenon, such as thermophoresis and electrophoresis, self-propelled movement of Janus particles is a relatively new phenomenon of mass transport. Recently, several models are proposed to explain the self-propelled motion of Janus particles in hydrogen peroxide solution powered by chemical reaction. However, some conflictive experimental results obtained by different groups. For this reason we design experiments to study the surface effect of particles.
In our study, the surfaces of particles are modified by silanization and adsorption of surfactants for changing the surface potential. The experimental results show that particle velocity is linearly proportional to zeta potential, and the direction of motion is related to sign of zeta potential as well. Therefore, we proposed a self-electrophoresis model to connect the relation between surface potential and the motion of particles. We also design an experimental setup for measuring the zeta potential of single colloidal particle. In addition, we obtain the electric dipole moment of Janus particles in electric field which agrees with our model. From these results, we suggest that Janus particles contain electric dipole and movements of particles are dependent on their surface properties.


致謝 i
中文摘要 ii
ABSTRCT iii
Contents iv
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 二氧化矽膠體粒子 2
1.2.1 二氧化矽膠體粒子的化學組成與研究應用 3
1.3 Janus 粒子 6
1.3.1 Janus 粒子的製備 7
1.3.2 Janus 粒子的研究應用 9
1.4 粒子在溶液中的運動 11
1.4.1 布朗運動與均方位移 11
1.4.2 電雙層模型、界達電位與德拜長度 14
1.4.3 膠體粒子電泳 17
1.5 Janus 粒子在過氧化氫水溶液中的運動模型 18
1.5.1 雙金屬圓柱自電泳模型 19
1.5.2 自擴散泳模型 21
1.5.3 氣泡推進模型 23
1.5.4 導體 - 非導體的電動效應 26
第二章 儀器、藥品 30
2.1 儀器 30
2.1.1 濺鍍機 30
2.1.2 ITO 玻璃 30
2.2 藥品 31
2.2.1 3-胺基丙基三乙氧基矽烷 ( APTES ) 31
2.2.2 過氧化氫水溶液 31
2.2.3 界面活性劑 31
第三章 實驗步驟 34
3.1 製作 Janus 粒子 34
3.1.1 單層二氧化矽粒子製作 34
3.1.2 二氧化矽粒子表面矽烷化修飾 35
3.1.3 白金濺鍍與粒子保存 35
3.2 粒子運動觀察與分析 37
3.2.1 觀察腔體設計 37
3.2.2 影片剪輯與粒子追蹤 38
3.2.3 均方位移作圖與速度計算 38
3.3 粒子表面電性測量 40
3.3.1 ITO 雙板變焦法 40
3.3.2 界達電位計算 41
第四章 實驗結果與討論 44
4.1 雙氧水濃度與粒子運動速度關係 44
4.2 鹽濃度與粒子運動速度之關係 46
4.3 表面修飾後 Janus 粒子之運動 48
4.3.1 以陽離子界面活性劑改變粒子電性 48
4.3.2 以胺基矽烷改變表面電性 50
4.3.3 矽烷表面修飾後再加入陰離子界面活性劑 51
4.4 粒子表面電位與運動速度之關係 52
4.5 粒子運動模型之比較 56
4.6 自電泳模型 57
4.7 粒子周圍流場與大尺度流場觀察 60
4.8 Janus 粒子之電偶極性質 63
4.9 表面電荷密度與電場估算與比較 67
4.10 不同導電度之基材上粒子之運動速度 71
第五章 結論 74
參考資料 75



1.Y. Hong, M. Diaz, U. M. Córdova-Figueroa, and A. Sen,"Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems", Advanced Functional Materials 20, 1568 (2010).
2.M. Ibele, T. E. Mallouk, and A. Sen,"Schooling behavior of light-powered autonomous micromotors in water", Angew Chem Int Ed Engl 48, 3308 (2009).
3.G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger,"Microswimmers in patterned environments", Soft Matter 7, 8810 (2011).
4.H.-R. Jiang, N. Yoshinaga, and M. Sano,"Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam", Physical Review Letters 105 (2010).
5.S. Duhr and D. Braun,"Optothermal Molecule Trapping by Opposing Fluid Flow with Thermophoretic Drift", Physical Review Letters 97 (2006).
6.Z. Liu, J. Li, J. Wang, G. Huang, R. Liu, and Y. Mei,"Small-scale heat detection using catalytic microengines irradiated by laser", Nanoscale 5, 1345 (2013).
7.S. Gangwal, O. J. Cayre, M. Z. Bazant, and O. D. Velev,"Induced-Charge Electrophoresis of Metallodielectric Particles", Physical Review Letters 100 (2008).
8.R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides,"Autonomous Movement and Self-Assembly", Angewandte Chemie 114, 674 (2002).
9.G. A. Ozin,"Channel Crossing by a Catalytic Nanomotor", ChemCatChem 5, 2798 (2013).
10.C. Kumsapaya, M. F. Bakai, G. Loget, B. Goudeau, C. Warakulwit, J. Limtrakul, A. Kuhn, and D. Zigah,"Wireless electrografting of molecular layers for Janus particle synthesis", Chemistry 19, 1577 (2013).
11.S. Sanchez, L. Soler, and J. Katuri,"Chemically powered micro- and nanomotors", Angew Chem Int Ed Engl 54, 1414 (2015).
12.Y. Weizmann, F. Patolsky, E. Katz, and I. Willner,"Amplified DNA Sensing and Immunosensing by the Rotation of Functional Magnetic Particles", Journal of the American Chemical Society 125, 3452 (2003).
13.D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K. M. Manesh, G.-U. Flechsig, and J. Wang,"Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver", Journal of the American Chemical Society 131, 12082 (2009).
14.C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, and V. S.-Y. Lin,"A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules", Journal of the American Chemical Society 125, 4451 (2003).
15.A. Synytska, R. Khanum, L. Ionov, C. Cherif, and C. Bellmann,"Water-repellent textile via decorating fibers with amphiphilic Janus particles", ACS applied materials & interfaces 3, 1216 (2011).
16.W. F. Paxton, A. Sen, and T. E. Mallouk,"Motility of catalytic nanoparticles through self-generated forces", Chemistry 11, 6462 (2005).
17.K. Moller and T. Bein,"Mesoporosity--a new dimension for zeolites", Chem Soc Rev 42, 3689 (2013).
18.I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin,"Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications", Advanced Functional Materials 17, 1225 (2007).
19.A. Walther and A. H. Muller,"Janus particles: synthesis, self-assembly, physical properties, and applications", Chem Rev 113, 5194 (2013).
20.Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva,"Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly", Journal of the American Chemical Society 128, 9408 (2006).
21.S. Bhaskar, J. Hitt, S. W. Chang, and J. Lahann,"Multicompartmental microcylinders", Angew Chem Int Ed Engl 48, 4589 (2009).
22.S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer, and S. Granick,"Janus particle synthesis and assembly", Adv Mater 22, 1060 (2010).
23.F. Wang, G. M. Pauletti, J. Wang, J. Zhang, R. C. Ewing, Y. Wang, and D. Shi,"Dual surface-functionalized Janus nanocomposites of polystyrene/Fe(3)O(4)@SiO(2) for simultaneous tumor cell targeting and stimulus-induced drug release", Adv Mater 25, 3485 (2013).
24.T. Nisisako, T. Torii, T. Takahashi, and Y. Takizawa,"Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System", Advanced Materials 18, 1152 (2006).
25.M. Osborne,"Periodic structure in the Brownian motion of stock prices", Operations Research 10, 345 (1962).
26.J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian,"Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk", Physical Review Letters 99 (2007).
27.M. Elimelech, W. H. Chen, and J. J. Waypa,"Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination 95, 269 (1994).
28.A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, P. International Union of, P. Applied Chemistry, and I. T. R. Biophysical Chemistry Division,"Measurement and interpretation of electrokinetic phenomena", J Colloid Interface Sci 309, 194 (2007).
29.W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi,"Catalytic nanomotors: autonomous movement of striped nanorods", Journal of the American Chemical Society 126, 13424 (2004).
30.Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, and T. E. Mallouk,"Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions", Langmuir 22, 10451 (2006).
31.W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, and A. Sen,"Catalytically Induced Electrokinetics for Motors and Micropumps", Journal of the American Chemical Society 128, 14881 (2006).
32.A. A. Farniya, M. J. Esplandiu, D. Reguera, and A. Bachtold,"Imaging the Proton Concentration and Mapping the Spatial Distribution of the Electric Field of Catalytic Micropumps", Physical Review Letters 111 (2013).
33.S. J. Ebbens and J. R. Howse,"Direct observation of the direction of motion for spherical catalytic swimmers", Langmuir 27, 12293 (2011).
34.J. G. Gibbs and Y. P. Zhao,"Autonomously motile catalytic nanomotors by bubble propulsion", Applied Physics Letters 94, 163104 (2009).
35.M. P. Brenner and D. Lohse,"Dynamic equilibrium mechanism for surface nanobubble stabilization", Physical review letters 101, 214505 (2008).
36.V. S. J. Craig,"Very small bubbles at surfaces—the nanobubble puzzle", Soft Matter 7, 40 (2011).
37.M. Manjare, B. Yang, and Y. P. Zhao,"Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors", Physical Review Letters 109 (2012).
38.S. Ebbens, D. A. Gregory, G. Dunderdale, J. R. Howse, Y. Ibrahim, T. B. Liverpool, and R. Golestanian,"Electrokinetic effects in catalytic platinum-insulator Janus swimmers", EPL (Europhysics Letters) 106, 58003 (2014).
39.A. Brown and W. Poon,"Ionic effects in self-propelled Pt-coated Janus swimmers", Soft Matter 10, 4016 (2014).
40.I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer, and K. J. Mayrhofer,"Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism", Phys Chem Chem Phys 14, 7384 (2012).
41.B. G. Prevo and O. D. Velev,"Controlled, rapid deposition of structured coatings from micro-and nanoparticle suspensions", Langmuir 20, 2099 (2004).
42.W. Choi, U. Mahajan, S.-M. Lee, J. Abiade, and R. K. Singh,"Effect of Slurry Ionic Salts at Dielectric Silica CMP", Journal of The Electrochemical Society 151, G185 (2004).
43.B. D. Coday, T. Luxbacher, A. E. Childress, N. Almaraz, P. Xu, and T. Y. Cath,"Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes", Journal of Membrane Science 478, 58 (2015).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top