跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余帝嶢
研究生(外文):Di-Yao Yu
論文名稱:壓電能量擷取振子有限元素模型之實驗驗證與等效參數模擬評估
論文名稱(外文):Finite Element Model of a Piezoelectric Energy HarvesterExperimental Validation and Numerical Evaluation of Equivalent Parameters
指導教授:舒貽忠
口試委員:陳瑞琳林祺皓
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:壓電振動能量擷取系統有限元素法力電耦合標準整流電路並聯式之同步切換開關電感整流電路
外文關鍵詞:Piezoelectric energy harvesting systemFinite elementStandard rectified interfaceParallel synchronized switch harvesting on inductor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要可分為兩大部分,第一是為利用有限元素法分析多種量測系統等效參數的方法及其優劣性與準確度。第二是則是針對搭配整流電路的壓電振動試樣之有限元素模型並進行實驗之驗證。
第一部分:利用有限元素法建立出一個壓電振動模型,以此模型透過三種不同方法所得到的系統等效參數之輸出功率結果做討論。此三種方法分別為1.純能量法解法、2.有限元素數值模擬搭配能量法解法、3.等效電路解法。純能量法透過漢米爾頓定理與瑞利-里茲逼近法來求得系統等效參數,在中強力電耦合有不錯的精確度,但在材料參數不完整或是模型具有其他幾何形狀時將導致模態函數不易求得,純能量法將不適用。有限元素數值模擬搭配能量法在強中弱力電耦合皆具有優良的精準度,但此方法需要搭配一部分純能量法解法之公式。最後,等效電路解法在強中弱力電耦合情況皆具有優良的精準度,但此方法僅能求出壓電振動系統中的電學結果,無法得到力學方面的結果。
第二部分:利用壓電振動子試樣,將壓電振動材料參數輸入於有限元素法後建立出具有整流電路之有限元素模型並實際操作壓電振動懸臂樑之實驗結果相互驗證。而實驗當中的壓電振動懸臂樑試樣的後端介面電路包含了交流電路、標準整流電路、並聯式之同步切換開關電感整流電路(Parallel Synchronized Switch Harvesting on Inductor,P-SSHI)三種。最後得到其實驗結果與有限元素軟體之數值模擬解結果吻合且趨勢一致。


This thesis discusses some problems in piezoelectric energy harvesting based on certain finite element (FE) models. It consists of two parts. The first part uses the FE simulation for performance evaluation of different methods used for deriving the equivalent parameters of a piezoelectric energy harvesting system. The second part is to perform the experiment for validating the FE model of a rectified piezoelectric energy harvesting system.

Specifically, there are three methods for finding the equivalent system parameters. The first one is based on the Hamiltonian energy principle and the Rayleigh-Ritz approximation. While all the parameters can be derived analytically, they can only be evaluated if the material properties of a device are known in advanced. In addition, the modal function used in Rayleigh-Ritz approximation may not be available for the case of irregular geometry of piezoelectric elements. The second one is based on the finite element simulation of a piezoelectric system together with the prescribed equivalent mass and force parameters derived from the energy formulation. This approach shows good accuracy, but it needs some parameters from the energy approach. Finally, the third approach is based on the equivalent circuit model. It shows very good accuracy in various magnitudes of electromechanical couplings. However, only the electric parameters can be revealed from this approach.

The second part is to develop an experiment setting for validating the FE model of a rectified piezoelectric energy harvesting system proposed by Prof. Shu’s research group. A piezoelectric cantilevered bimorph is used and the interface circuits include the AC circuit, the standard rectified interface and the parallel synchronized switch harvesting on inductor (P-SSHI) circuit. The experimental results agree quite well with the proposed finite element simulations.


誌謝..............................................................................i
摘要..............................................................................ii
Abstract..........................................................................iii
目錄..............................................................................iv
圖目錄............................................................................vi
表目錄............................................................................x
第一章導論........................................................................1
1.1研究動機..................................................................1
1.2文獻回顧..................................................................2
1.3論文架構..................................................................4
第二章壓電理論....................................................................6
2.1壓電效應..................................................................6
2.1.1正壓電效應...........................................................6
2.1.2逆壓電效應...........................................................7
2.2 線性壓電材料之本構方程式..................................................8
2.3 壓電懸臂樑之數學模型與幾何關係...........................................11
2.4 壓電懸臂樑之等效電路模型.................................................14
第三章 壓電振動系統之等效參數與有限元素模型建立與數值分析........................19
3.1 壓電振動懸臂樑之共振頻率分析.............................................20
3.2 COMSOL數值模擬解法.......................................................22
3.3 純能量法之法.............................................................23
3.4壓電懸臂樑之等效電路參數分析..............................................24
3.5 COMSOL 數值模擬搭配能量法之解法..........................................26
3.6 等效電路之解法...........................................................27
第四章 應用於整流壓電振動系統之有限元素模型建立與數值分析........................29
4.1節 單根壓電振動子在有限元素法中的整流電路等效化..........................29
第五章 不同系統等效參數求法在強中弱力電耦合之數值評估............................33
5.1有限元素法軟體COMSOL的PDE自建模組與壓電振動模組之比較..................33
5.2 強力電耦合壓電振動子在交流電路下之不同解法之分析........................34
5.3 中力電耦合壓電振動子在交流電路下之不同解法之分析........................39
5.4 弱力電耦合壓電振動子在交流電路下之不同解法之分析........................44
第六章 整流壓電振動實驗與有限元素法之結果驗證...................................54
6.1.1實驗架構..............................................................54
6.1.2實驗儀器..............................................................56
6.1.3實驗步驟..............................................................61
6.2實驗結果與數值解結果....................................................63
第七章 結論與展望................................................................69
7.1結論.....................................................................69
7.2未來展望.................................................................71
參考文獻.........................................................................72
附錄A............................................................................75
附錄B.1 COMSOL 材料參數設定......................................................78
附錄B.2壓電懸臂樑之共振頻率分析COMSOL 邊界設定..................................81
附錄B.3壓電懸臂樑之等效電路參數分析COMSOL邊界設定..............................82
附錄B.4壓電懸臂樑交流發電之COMSOL邊界設定......................................83
附錄C.COMSOL各實例操作步驟......................................................86
附錄D 數值模擬軟體COMSOL 3.5a 補充說明..........................................97
附錄E 強力電耦合與中力電耦合增加細長比之誤差結果................................103


[1]A. Erturk and D. J. Inman (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures. 17 065016
[2]L. K. Jeffrey and A. George (2009) A low-order model for the design of piezoelectric energy harvesting devices. Material Systems and Structures. 20 495–504
[3]P. Shashank (2005) Modeling of electric energy harvesting using piezoelectric windmill Applied Physics Letters. 87 184101
[4]S.O. Thiago (2009) On the reduced-order modeling of energy harvesters. Journal of Intelligent Material Systems and Structures. 20 2003–16
[5]Y.C. Shu and I.C. Lien (2006) Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering. 16 2429–38
[6]W. Quan and W. Nan (2012) Optimal design of a piezoelectric coupled beam for power harvesting. Smart Materials and Structures. 21 085013
[7]M.A. Karami , B. Onur , J. Inman Daniel and I. Friswell Michael (2011) Experimental and analytical parametric study of singlecrystal unimorph beams for vibration energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 1508–20
[8]M. Alex , M. Kee. S. and Y. Jingang. (2009) A vibration-based PMNPT energy harvester. IEEE Sensors Journal. 9 731–9
[9]S. R. Oh , T. C. Wong , C. Y. Tan , K. Yao and F. E. Tay (2014) Fabrication of piezoelectric polymer multilayers on flexible substrates for energy harvesting. Smart Materials and Structures. 23 015013
[10]P. H. Hsieh , C. H. Chen and H. C. Chen (2015) Improving the scavenged power of nonlinear piezoelectric energy harvesting interface at off-resonance by introducing switching delay. IEEE Transactions on Power Electronics. 30 3142–55
[11]M. Lallart and D. Guyomar (2008) An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures. 17 035030


[12]J. R. Liang and W. H. Liao (2012) Impedance modeling and analysis for piezoelectric energy harvesting systems IEEE/ASME Transactions on Mechatronics 17 1145–57
[13]J. R. Liang and W. H. Liao (2012) Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems IEEE Transactions on Industrial Electronics. 59 1950–60
[14]I. C. Lien, Y. C.Shu , W. J. Wu, S. M. Shiu and H. C. Lin (2010) Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting. Smart Materials and Structures. 19 125009
[15]Y. Liu, G. Tian , Y. Wang, J. Lin , Q. Zhang and H. F. Hofmann (2009) Active piezoelectric energy harvesting: general principle and experimental demonstration. Journal of Intelligent Material Systems and Structures. 20 575–85
[16]J. T. Scruggs (2009) An optimal stochastic control theory for distributed energy harvesting networks. Journal of Sound and Vibration. 320 707–25
[17]Y. C. Shu and I. C. Lien (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures. 15 1499–512
[18]Y. C. Shu , I. C. Lien and W. J. Wu (2007) An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures. 16 2253–64
[19]A. M. Wickenheiser and E. Garcia (2010) Power optimization of vibration energy harvesters utilizing passive and active circuits. Journal of Intelligent Material Systems and Structures. 21 1343–61
[20]A. Erturk, J. M. Renno and D. J. Inman (2009) Modeling of piezoelectric energy harvesting from an L-shaped beammass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures 20 529–44
[21]M. Zhu, E. Worthington and J. Njuguna (2009) Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency. 56 1309–18
[22]A. Abdelkefi , N. Barsallo, L. Tang, Y. Yang and M. R. Hajj (2014) Modeling, validation, and performance of low-frequency piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 25 1429–44

[23]J. Schoeftner and G. Buchberger (2013) A contribution on the optimal design of a vibrating cantilever in a power harvesting application—optimization of piezoelectric layer distributions in combination with advanced harvesting circuits. Engineering Structures. 53 92–101
[24]X. Xiong and S. O. Oyadiji (2014) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. Journal of Intelligent Material Systems and Structures. 25 1177–95
[25]C. D. Marqu Jr. , A. Erturk and D. J. Inman (2009) An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration. 327 9–25
[26]J. E. Kim and Y. Y. Kim (2011) Analysis of piezoelectric energy harvesters of a moderate aspect ratio with a distributed tip mass. Journal of Vibration and Acoustics. 133 041010
[27]M. F. Lumentut and I. M. Howard (2014) Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offsand under base excitations. Smart Materials and Structures. 23 095037
[28]N. G. Elvin and A. A. Elvin (2009) A coupled finite element circuit simulation model for analyzing piezoelectric energy generators. Journal of Intelligent Material Systems and Structures. 20 587–95
[29]Y. Yang and L. Tang (2009) Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 20 2223–35
[30]I. C. Lien and Y. C. Shu (2012) Array of piezoelectric energy harvesting by equivalent impedance approach. Smart Materials and Structures.21 082001
[31]P. H. Wu and Y. C. Shu (2015) Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Materials and Structures. 24 094008
[32]連益慶(2011), 陣列式壓電能量擷取系統在多種介面電路下之動態特性分析. 台灣大學應用力學研究所博士論文.
[33]連益慶(2005), 壓電能量擷取系統之分析研究. 台灣大學應力所碩士論文.
[34]ANSI/IEEE Standard 176-1987 IEEE Standard on Piezoelectricity.
[35]Singiresu S.Rao. Mechanical Vibrations.
[36]Ikeda, T. 1990. Fundamentals of Piezoelectricity, Oxford University Press,Oxford.
[37]莊欽雄(2015), 陣列式壓電能量擷取系統之半自動化人機介面設計. 台灣大學應力所碩士論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top