[1]美濃廣進勝油紙傘. from http://www.interactive.idv.tw/cc/stworks/tcweb/umbrella_49648133/
[2]林怡君. (2011). 全新式精密圖案塗佈技術之開發與研究-「太極塗佈法」. 博士學位論文, 國立台灣大學, 台灣.[3]Wang, A.-B., Lin, I.-C., Wang, Y.-H., Lee, C.-K., and Lin, S. (2012). EU Patent No. EP2014471 ( B1 ).
[4]Wang, A.-B., Lin, I.-C., Wang, Y.-H., and Lee, C.-K. (2010). US Patent No. 07824736 ( B2 ).
[5]王安邦, 林怡君, 王怡華, 李世光, and 林世明. (2013). JP Patent No. 5248847 ( B2 ).
[6]왕안방, 린이천, 왕이후아, 이치궁, and 린쉬밍. (2011). KR Patent No. 1020080055684 ( B1 ).
[7]王安邦, 林怡君, 王怡華, 李世光, and 林世明. (2015). TW Patent No. I466732.
[8]王安邦, 林怡君, 王怡华, and 李世光. (2010). CN Patent No. CN101264475 ( B ).
[9]Das, R. (2009). Printed and Flexible Electronics: Global Markets and Trends 2009-2019. Association of Industrial Metallizers, Coaters and Laminators Fall Technical Conference and 23rd International Vacuum Web Coating Conference 2009, Amelia Island, Florida, USA.
[10]Liu, Y., Cui, T., and Varahramyan, K. (2003). All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electronics, 47(9), 1543-1548.
[11]Pudas, M., Halonen, N., Granat, P., and Vähäkangas, J. (2005). Gravure printing of conductive particulate polymer inks on flexible substrates. Progress in Organic Coatings, 54(4), 310-316.
[12]潘柏廷. (2010). 精微圖案毛細管塗佈之研究. 碩士學位論文, 國立台灣大學, 台灣.[13]Lim, J., Kim, J., Yoon, Y. J., Kim, H., Yoon, H. G., Lee, S.-N., and Kim, J. (2012). All-inkjet-printed Metal-Insulator-Metal (MIM) capacitor. Current Applied Physics, 12, Supplement 1, e14-e17.
[14]劉祐汝. (2012). 全新狹縫式塗佈頭製程技術之開發及其於積層陶瓷電容之應用. 碩士學位論文, 國立台灣大學, 台灣.
[15]Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P. (2000). High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science, 290(5499), 2123-2126.
[16]Katz, H. E. (2004). Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics. Chemistry of Materials, 16(23), 4748-4756.
[17]Fan, Z., Ho, J. C., Jacobson, Z. A., Yerushalmi, R., Alley, R. L., Razavi, H., and Javey, A. (2008). Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Letters, 8(1), 20-25.
[18]Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J. W., Kim, D. H., Kwon, J.-Y., Amaratunga, G., Lee, S. Y., Choi, B. L., Kuk, Y., Kim, J. M., and Kim, K. (2011). Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 5(3), 176-182.
[19]Kang, B., Lee, W. H., and Cho, K. (2013). Recent Advances in Organic Transistor Printing Processes. ACS Applied Materials & Interfaces, 5(7), 2302-2315.
[20]Koo, H. S., Chen, M., Pan, P. C., Chou, L. T., Wu, F. M., Chang, S. J., and Kawai, T. (2006). Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique. Displays, 27(3), 124-129.
[21]Koo, H.-S., Chen, M., and Pan, P.-C. (2006). LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology. Thin Solid Films, 515(3), 896-901.
[22]Lee, T.-M., Choi, Y.-J., Nam, S.-Y., You, C.-W., Na, D.-Y., Choi, H.-C., Shin, D.-Y., Kim, K.-Y., and Jung, K.-I. (2008). Color filter patterned by screen printing. Thin Solid Films, 516(21), 7875-7880.
[23]Chang, Y.-G., Nam, S.-H., Kim, N.-K., Kook, Y.-H., Kim, J., Yoo, S.-S., Kim, C.-D., Kang, I.-B., and Chung, I.-J. (2009). A study of roll-printing technology for TFT-LCD fabrication. Journal of the Society for Information Display, 17(4), 301-307.
[24]Kim, Y. D., Kim, J. P., Kwon, O. S., and Cho, I. H. (2009). The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters. Dyes and Pigments, 81(1), 45-52.
[25]Tien, C.-H., Hung, C.-H., and Yu, T.-H. (2009). Microlens Arrays by Direct-Writing Inkjet Print for LCD Backlighting Applications. Journal of Display Technology, 5(5), 147-151.
[26]Grennan, K., J. Killard, A., and R. Smyth, M. (2001). Physical Characterizations of a Screen-Printed Electrode for Use in an Amperometric Biosensor System. Electroanalysis, 13(8-9), 745-750.
[27]Barron, J. A., Rosen, R., Jones-Meehan, J., Spargo, B. J., Belkin, S., and Ringeisen, B. R. (2004). Biological laser printing of genetically modified Escherichia coli for biosensor applications. Biosensors and Bioelectronics, 20(2), 246-252.
[28]Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., and Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026.
[29]Wu, P., Hogrebe, P., and Grainger, D. W. (2006). DNA and protein microarray printing on silicon nitride waveguide surfaces. Biosensors and Bioelectronics, 21(7), 1252-1263.
[30]Tudorache, M., and Bala, C. (2007). Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry, 388(3), 565-578.
[31]Hossain, S. M. Z., Ozimok, C., Sicard, C., Aguirre, S. D., Ali, M. M., Li, Y., and Brennan, J. D. (2012). Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 403(6), 1567-1576.
[32]Li, J., Rossignol, F., and Macdonald, J. (2015). Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab on a Chip, 15(12), 2538-2558.
[33]Varghese, D., Deshpande, M., Xu, T., Kesari, P., Ohri, S., and Boland, T. (2005). Advances in tissue engineering: Cell printing. The Journal of Thoracic and Cardiovascular Surgery, 129(2), 470-472.
[34]Xu, T., Jin, J., Gregory, C., Hickman, J. J., and Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93-99.
[35]Karoly, J., Cyrille, N., Francoise, M., Keith, M., Gordana, V.-N., and Gabor, F. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2(2), 022001.
[36]Nathan, R. S., David, T. C., Yong, H., Nurazhani Abdul, R., Yubing, X., and Douglas, B. C. (2010). Laser-based direct-write techniques for cell printing. Biofabrication, 2(3), 032001.
[37]Pati, F., Ha, D.-H., Jang, J., Han, H. H., Rhie, J.-W., and Cho, D.-W. (2015). Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 62, 164-175.
[38]Chen, Y., Au, J., Kazlas, P., Ritenour, A., Gates, H., and McCreary, M. (2003). Electronic paper: Flexible active-matrix electronic ink display. Nature, 423(6936), 136-136.
[39]Liang, R. C., Hou, J., Zang, H., Chung, J., and Tseng, S. (2003). Microcup® displays: Electronic paper by roll-to-roll manufacturing processes. Journal of the Society for Information Display, 11(4), 621-628.
[40]Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. (2011). PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada.
[41]McCollough, G. T., Rankin, C. M., and Weiner, M. L. (2005). 6.1: Roll-to-Roll Manufacturing Considerations for Flexible, Cholesteric Liquid Crystal (ChLC) Display Media. SID Symposium Digest of Technical Papers, 36(1), 64-67.
[42]Khan, A., Shiyanovskaya, I., Schneider, T., Montbach, E., Davis, D. J., Miller, N., Marhefka, D., Ernst, T., Nicholson, F., and Doane, J. W. (2007). Progress in flexible and drapable reflective cholesteric displays. Journal of the Society for Information Display, 15(1), 9-16.
[43]Lee, B.-Y., and Lee, J.-H. (2011). Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels. Current Applied Physics, 11(6), 1389-1393.
[44]Pardo, D. A., Jabbour, G. E., and Peyghambarian, N. (2000). Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices. Advanced Materials, 12(17), 1249-1252.
[45]Villani, F., Vacca, P., Nenna, G., Valentino, O., Burrasca, G., Fasolino, T., Minarini, C., and della Sala, D. (2009). Inkjet Printed Polymer Layer on Flexible Substrate for OLED Applications. The Journal of Physical Chemistry C, 113(30), 13398-13402.
[46]Katsuhara, M., Yagi, I., Yumoto, A., Noda, M., Hirai, N., Yasuda, R., Moriwaki, T., Ushikura, S., Imaoka, A., Urabe, T., and Nomoto, K. (2010). A flexible OLED display with an OTFT backplane made by scalable manufacturing process. Journal of the Society for Information Display, 18(6), 399-404.
[47]Qi, Y., Jafferis, N. T., Lyons, K., Lee, C. M., Ahmad, H., and McAlpine, M. C. (2010). Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters, 10(2), 524-528.
[48]Li, Y., Torah, R., Beeby, S., and Tudor, J. (2012, 28-31 Oct. 2012). An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications. Paper presented at the Sensors, 2012 IEEE.
[49]El-Kady, M. F., and Kaner, R. B. (2013). Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun, 4, 1475.
[50]Pagliaro, M., Ciriminna, R., and Palmisano, G. (2008). Flexible Solar Cells. ChemSusChem, 1(11), 880-891.
[51]Krebs, F. C., Fyenbo, J., and Jorgensen, M. (2010). Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. Journal of Materials Chemistry, 20(41), 8994-9001.
[52]Galagan, Y., J.M. Rubingh, J.-E., Andriessen, R., Fan, C.-C., W.M. Blom, P., C. Veenstra, S., and M. Kroon, J. (2011). ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials and Solar Cells, 95(5), 1339-1343.
[53]Subramanian, V., Frechet, J. M. J., Chang, P. C., Huang, D. C., Lee, J. B., Molesa, S. E., Murphy, A. R., Redinger, D. R., and Volkman, S. K. (2005). Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices. Proceedings of the IEEE, 93(7), 1330-1338.
[54]Abad, E., Zampolli, S., Marco, S., Scorzoni, A., Mazzolai, B., Juarros, A., Gómez, D., Elmi, I., Cardinali, G. C., Gómez, J. M., Palacio, F., Cicioni, M., Mondini, A., Becker, T., and Sayhan, I. (2007). Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic. Sensors and Actuators B: Chemical, 127(1), 2-7.
[55]Rida, A., Yang, L., Vyas, R., and Tentzeris, M. M. (2009). Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications. IEEE Antennas and Propagation Magazine, 51(3), 13-23.
[56]Lee, C. S., Kim, J. Y., Lee, D. E., Koo, Y. K., Joo, J., Han, S., Beag, Y. W., and Koh, S. K. (2003). Organic Based Flexible Speaker Through Enhanced Conductivity of PEDOT/PSS with Various Solvents. Synthetic Metals, 135–136, 13-14.
[57]Yu, X., Rajamani, R., Stelson, K. A., and Cui, T. (2006). Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sensors and Actuators A: Physical, 132(2), 626-631.
[58]Shin, K.-Y., Hong, J.-Y., and Jang, J. (2011). Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chemical Communications, 47(30), 8527-8529.
[59]Chu, M., Kudo, H., Shirai, T., Miyajima, K., Saito, H., Morimoto, N., Yano, K., Iwasaki, Y., Akiyoshi, K., and Mitsubayashi, K. (2009). A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomedical Microdevices, 11(4), 837-842.
[60]Jung, J., Kim, S. J., Lee, K. W., Yoon, D. H., Kim, Y.-g., Kwak, H. Y., Dugasani, S. R., Park, S. H., and Kim, H. J. (2014). Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosensors and Bioelectronics, 55, 99-105.
[61]Pavinatto, F. J., Paschoal, C. W. A., and Arias, A. C. (2015). Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Biosensors and Bioelectronics, 67, 553-559.
[62]Fouad, O. A., Ismail, A. A., Zaki, Z. I., and Mohamed, R. M. (2006). Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Applied Catalysis B: Environmental, 62(1–2), 144-149.
[63]Richter, G., Hillerich, K., Gianola, D. S., Mönig, R., Kraft, O., and Volkert, C. A. (2009). Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Letters, 9(8), 3048-3052.
[64]Cuellar, E. L., Martínez-de la Cruz, A., Torres, N. C., and Cortez, J. O. (2015). Deposition of BiOBr thin films by thermal evaporation and evaluation of its photocatalytic activity. Catalysis Today, 252, 2-6.
[65]Rossnagel, S. M., and Hopwood, J. (1993). Magnetron sputter deposition with high levels of metal ionization. Applied Physics Letters, 63(24), 3285-3287.
[66]Chiou, W.-T., Wu, W.-Y., and Ting, J.-M. (2003). Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials, 12(10–11), 1841-1844.
[67]Torimoto, T., Okazaki, K.-i., Kiyama, T., Hirahara, K., Tanaka, N., and Kuwabata, S. (2006). Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Applied Physics Letters, 89(24), 243117.
[68]Hüttinger, K. J. (1998). CVD in Hot Wall Reactors—The Interaction Between Homogeneous Gas-Phase and Heterogeneous Surface Reactions. Chemical Vapor Deposition, 4(4), 151-158.
[69]Jun, C.-S., and Lee, K.-H. (2000). Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall). Journal of Membrane Science, 176(1), 121-130.
[70]Hu, J., and Gordon, R. G. (1992). Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. Journal of Applied Physics, 72(11), 5381-5392.
[71]Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., and Ruoff, R. S. (2011). Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 133(9), 2816-2819.
[72]Meyerson, B. S. (1986). Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Applied Physics Letters, 48(12), 797-799.
[73]Boyer, P. K., Roche, G. A., Ritchie, W. H., and Collins, G. J. (1982). Laser‐induced chemical vapor deposition of SiO2. Applied Physics Letters, 40(8), 716-719.
[74]Yugo, S., Kanai, T., Kimura, T., and Muto, T. (1991). Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Applied Physics Letters, 58(10), 1036-1038.
[75]Matsui, S., Kaito, T., Fujita, J.-i., Komuro, M., Kanda, K., and Haruyama, Y. (2000). Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. Journal of Vacuum Science & Technology B, 18(6), 3181-3184.
[76]Maillard, M., Bleyer, J., Andrieux, A. L., Boujlel, J., and Coussot, P. (2016). Dip-coating of yield stress fluids. Physics of Fluids, 28(5), 053102.
[77]Scriven, L. E. (1988). Physics and Applications of DIP Coating and Spin Coating. MRS Online Proceedings Library Archive, 121, 717 (713 pages).
[78]White, D. A., and Tallmadge, J. A. (1965). Theory of drag out of liquids on flat plates. Chemical Engineering Science, 20(1), 33-37.
[79]Faustini, M., Louis, B., Albouy, P. A., Kuemmel, M., and Grosso, D. (2010). Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions. The Journal of Physical Chemistry C, 114(17), 7637-7645.
[80]Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H., and Zink, J. I. (1997). Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 389(6649), 364-368.
[81]Sahu, N., Parija, B., and Panigrahi, S. (2009). Fundamental understanding and modeling of spin coating process: A review. Indian Journal of Physics, 83(4), 493-502.
[82]Extrand, C. W. (1994). Spin coating of very thin polymer films. Polymer Engineering & Science, 34(5), 390-394.
[83]Zhang, G., Wang, Y., and Ma, J. (2002). Bingham plastic fluid flow model for ceramic tape casting. Materials Science and Engineering: A, 337(1–2), 274-280.
[84]Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 93(4), 394-412.
[85]Benkreira, H., Edwards, M. F., and Wilkinson, W. L. (1981). Roll coating of purely viscous liquids. Chemical Engineering Science, 36(2), 429-434.
[86]盛東城. (1989). 滾筒式表面塗佈工程的研究. 碩士學位論文, 國立清華大學, 台灣.[87]Ning, C.-Y., Tsai, C.-C., and Liu, T.-J. (1996). The effect of polymer additives on extrusion slot coating. Chemical Engineering Science, 51(12), 3289-3297.
[88]Charbonneaux, T. G. (1991). Design of Sheet Dies for Minimum Residence Time Distribution: A Review. Polymer-Plastics Technology and Engineering, 30(7), 665-684.
[89]Yen, Y.-K., Jiang, Y.-W., Chang, S.-C., and Wang, A.-B. (2014). Western Blotting by Thin-Film Direct Coating. Analytical Chemistry, 86(10), 5164-5170.
[90]Liu, C.-Y., Lu, D.-C., Jiang, Y.-W., Yen, Y.-K., Chang, S.-C., and Wang, A.-B. (2016). Easy and Fast Western Blotting by Thin-Film Direct Coating with Suction. Analytical Chemistry.
[91]Schweizer, P. M., and Kistler, S. F. (2012). Liquid Film Coating: Scientific principles and their technological implications: Springer Netherlands.
[92]Carvalho, M. S., and Kheshgi, H. S. (2000). Low-flow limit in slot coating: Theory and experiments. AIChE Journal, 46(10), 1907-1917.
[93]Romero, O. J., Suszynski, W. J., Scriven, L. E., and Carvalho, M. S. (2004). Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. Journal of Non-Newtonian Fluid Mechanics, 118(2–3), 137-156.
[94]Russell, T. A. (1956). US Patent No. 2761791 ( A ).
[95]Christodoulou, K. N., and Scriven, L. E. (1989). The fluid mechanics of slide coating. Journal of Fluid Mechanics, 208, 321-354.
[96]Hens, J., and Van Abbenyen, W. (1997). Slide Coating. In S. F. Kistler & P. M. Schweizer (Eds.), Liquid Film Coating: Scientific principles and their technological implications (pp. 427-462). Dordrecht: Springer Netherlands.
[97]Schweizer, P. M. (2000). Curtain coating technology can mean big benefits. Paper, Film and Foil Converter, 74(3), 102.
[98]Pritchard, W. G. (1986). Instability and chaotic behaviour in a free-surface flow. Journal of Fluid Mechanics, 165, 1-60.
[99]Weinstein, S. J., Clarke, A., Moon, A. G., and Simister, E. A. (1997). Time-dependent equations governing the shape of a two-dimensional liquid curtain, Part 1: Theory. Physics of Fluids, 9(12), 3625-3636.
[100]Mäkelä, T., Haatainen, T., Majander, P., and Ahopelto, J. (2007). Continuous roll to roll nanoimprinting of inherently conducting polyaniline. Microelectronic Engineering, 84(5–8), 877-879.
[101]Kipphan, H. (2001). Handbook of Print Media: Technologies and Production Methods: Springer.
[102]Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1996). Imprint lithography with 25-nanometer resolution. Science, 272(5258), 85.
[103]Lee, D. H., Choi, J. S., Chae, H., Chung, C. H., and Cho, S. M. (2009). Screen-printed white OLED based on polystyrene as a host polymer. Current Applied Physics, 9(1), 161-164.
[104]Sndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Materials Today, 15(1–2), 36-49.
[105]Ghafar-Zadeh, E., Sawan, M., and Therriault, D. (2007). Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sensors and Actuators A: Physical, 134(1), 27-36.
[106]Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X. Y., Park, S. I., Xiong, Y. J., Yoon, J., Nuzzo, R. G., Rogers, J. A., and Lewis, J. A. (2009). Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 323(5921), 1590-1593.
[107]Ahn, B. Y., Shoji, D., Hansen, C. J., Hong, E., Dunand, D. C., and Lewis, J. A. (2010). Printed Origami Structures. Advanced Materials, 22(20), 2251-2254.
[108]Barbulovic-Nad, I., Lucente, M., Sun, Y., Zhang, M., Wheeler, A. R., and Bussmann, M. (2006). Bio-microarray fabrication techniques - A review. Critical Reviews in Biotechnology, 26(4), 237-259.
[109]Milbourn, T. M., and Barth, J. J. (1994). US Patent No. 5360629 ( A ).
[110]Harada, Y., Yamamoto, K., Hironaka, K., Kobara, H., Matsui, E., Okada, K., and Yoshikawa, T. (1996). US Patent No. 5582868 ( A ).
[111]Liu, T. J., and Chang, E. R. (2008). US Patent No. 7416608 ( B2 ).
[112]Derby, B. (2010). Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research, 40(1), 395-414.
[113]Christanti, Y., and Walker, L. M. (2002). Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. Journal of Rheology, 46(3), 733-748.
[114]Naiman, M. (1965). US Patent No. 3179042 ( A ).
[115]Zoltan, S. I. (1972). US Patent No. 3683212 ( A ).
[116]Jurgen, D., Ana Claudia, A., William, W., Rene, L., Steve, R., Brent, K., and Robert, S. (2007). Jet-Printed Active-Matrix Backplanes and Electrophoretic Displays. Japanese Journal of Applied Physics, 46(3S), 1363.
[117]Mette, A., Richter, P. L., Hörteis, M., and Glunz, S. W. (2007). Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications, 15(7), 621-627.
[118]Mahajan, A., Frisbie, C. D., and Francis, L. F. (2013). Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines. ACS Applied Materials & Interfaces, 5(11), 4856-4864.
[119]Goth, C., Putzo, S., and Franke, J. (2011, May 31 2011-June 3 2011). Aerosol Jet printing on rapid prototyping materials for fine pitch electronic applications. Paper presented at the 2011 IEEE 61st Electronic Components and Technology Conference (ECTC).
[120]Wang, A.-B., Lin, I. C., Hsieh, Y.-W., Shih, W.-P., and Wu, G.-W. (2011). Effective pressure and bubble generation in a microfluidic T-junction. Lab on a Chip, 11(20), 3499-3507.
[121]林義暐. (2010). 微二相流產生器之研究. 碩士學位論文, 國立台灣大學, 台灣.[122]Gunther, A., Khan, S. A., Thalmann, M., Trachsel, F., and Jensen, K. F. (2004). Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 4(4), 278-286.
[123]Kinoshita, H., Kaneda, S., Fujii, T., and Oshima, M. (2007). Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip, 7(3), 338-346.
[124]Song, H., Tice, J. D., and Ismagilov, R. F. (2003). A Microfluidic System for Controlling Reaction Networks in Time. Angewandte Chemie, 115(7), 792-796.
[125]Liu, D., Liang, G., Lei, X., Chen, B., Wang, W., and Zhou, X. (2012). Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor. Analytica Chimica Acta, 718, 58-63.
[126]Zheng, B., Tice, J. D., Roach, L. S., and Ismagilov, R. F. (2004). A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction. Angewandte Chemie International Edition, 43(19), 2508-2511.
[127]Hoang, P. H., and Dien, L. Q. (2014). Fast synthesis of an inorganic-organic block copolymer in a droplet-based microreactor. RSC Advances, 4(16), 8283-8288.
[128]Hoang, P. H., Yoon, K.-B., and Kim, D.-P. (2012). Synthesis of hierarchically porous zeolite A crystals with uniform particle size in a droplet microreactor. RSC Advances, 2(12), 5323-5328.
[129]Kim, Y. H., Zhang, L., Yu, T., Jin, M., Qin, D., and Xia, Y. (2013). Droplet-Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small, 9(20), 3462-3467.
[130]Song, H., Chen, D. L., and Ismagilov, R. F. (2006). Reactions in Droplets in Microfluidic Channels. Angewandte Chemie International Edition, 45(44), 7336-7356.
[131]Priest, C., Herminghaus, S., and Seemann, R. (2006). Generation of monodisperse gel emulsions in a microfluidic device. Applied Physics Letters, 88(2), 024106.
[132]Yi, G. R., Thorsen, T., Manoharan, V. N., Hwang, M. J., Jeon, S. J., Pine, D. J., Quake, S. R., and Yang, S. M. (2003). Generation of Uniform Colloidal Assemblies in Soft Microfluidic Devices. Advanced Materials, 15(15), 1300-1304.
[133]Jeong, W. J., Kim, J. Y., Choo, J., Lee, E. K., Han, C. S., Beebe, D. J., Seong, G. H., and Lee, S. H. (2005). Continuous Fabrication of Biocatalyst Immobilized Microparticles Using Photopolymerization and Immiscible Liquids in Microfluidic Systems. Langmuir, 21(9), 3738-3741.
[134]Nisisako, T., Torii, T., and Higuchi, T. (2004). Novel microreactors for functional polymer beads. Chemical Engineering Journal, 101(1–3), 23-29.
[135]De Geest, B. G., Urbanski, J. P., Thorsen, T., Demeester, J., and De Smedt, S. C. (2005). Synthesis of Monodisperse Biodegradable Microgels in Microfluidic Devices. Langmuir, 21(23), 10275-10279.
[136]Yun, S., Peng, J., Dai-Wen, P., and Zhi-Ling, Z. (2015). Droplet-based microreactor for synthesis of water-soluble Ag 2 S quantum dots. Nanotechnology, 26(27), 275701.
[137]Riche, C. T., Roberts, E. J., Gupta, M., Brutchey, R. L., and Malmstadt, N. (2016). Flow invariant droplet formation for stable parallel microreactors. Nat Commun, 7.
[138]Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537-541.
[139]Vasiljevic, D., Parojcic, J., Primorac, M., and Vuleta, G. (2006). An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. International Journal of Pharmaceutics, 309(1–2), 171-177.
[140]Choi, C.-H., Jung, J.-H., Rhee, Y. W., Kim, D.-P., Shim, S.-E., and Lee, C.-S. (2007). Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomedical Microdevices, 9(6), 855-862.
[141]Skurtys, O., and Aguilera, J. M. (2008). Applications of Microfluidic Devices in Food Engineering. Food Biophysics, 3(1), 1-15.
[142]Gong, X., Wen, W., and Sheng, P. (2009). Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets. Langmuir, 25(12), 7072-7077.
[143]Fernández-Nieves, A., Vitelli, V., Utada, A. S., Link, D. R., Márquez, M., Nelson, D. R., and Weitz, D. A. (2007). Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 99(15), 157801.
[144]陳怡婷. (2015). 整合製備相轉移材料微膠囊之同心毛細管微流道系統開發研究. 碩士學位論文, 國立台灣大學, 台灣.[145]Churski, K., Korczyk, P., and Garstecki, P. (2010). High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab on a Chip, 10(7), 816-818.
[146]Edwards, B. S., Oprea, T., Prossnitz, E. R., and Sklar, L. A. (2004). Flow cytometry for high-throughput, high-content screening. Current Opinion in Chemical Biology, 8(4), 392-398.
[147]Fabel, S., Niessner, R., and Weller, M. G. (2005). Effect-directed analysis by high-performance liquid chromatography with gas-segmented enzyme inhibition. Journal of Chromatography A, 1099(1–2), 103-110.
[148]Pei, J., Li, Q., Lee, M. S., Valaskovic, G. A., and Kennedy, R. T. (2009). Analysis of Samples Stored as Individual Plugs in a Capillary by Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 81(15), 6558-6561.
[149]Bartsch, J. W., Tran, H. D., Waller, A., Mammoli, A. A., Buranda, T., Sklar, L. A., and Edwards, B. S. (2004). An Investigation of Liquid Carryover and Sample Residual for a High-Throughput Flow Cytometer Sample Delivery System. Analytical Chemistry, 76(13), 3810-3817.
[150]Linder, V., Sia, S. K., and Whitesides, G. M. (2005). Reagent-Loaded Cartridges for Valveless and Automated Fluid Delivery in Microfluidic Devices. Analytical Chemistry, 77(1), 64-71.
[151]He, M., Edgar, J. S., Jeffries, G. D. M., Lorenz, R. M., Shelby, J. P., and Chiu, D. T. (2005). Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets. Analytical Chemistry, 77(6), 1539-1544.
[152]Garstecki, P., J. Fuerstman, M., Fischbach, M. A., Sia, S. K., and Whitesides, G. M. (2006). Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab on a Chip, 6(2), 207-212.
[153]Mao, X., Juluri, B. K., Lapsley, M. I., Stratton, Z. S., and Huang, T. J. (2009). Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics, 8(1), 139-144.
[154]Ahmed, D., Mao, X., Shi, J., Juluri, B. K., and Huang, T. J. (2009). A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 9(18), 2738-2741.
[155]Prakash, M., and Gershenfeld, N. (2007). Microfluidic bubble logic. Science, 315(5813), 832-835.
[156]Fuerstman, M. J., Garstecki, P., and Whitesides, G. M. (2007). Coding/decoding and reversibility of droplet trains in microfluidic networks. Science, 315(5813), 828-832.
[157]Katsikis, G., Cybulski, J. S., and Prakash, M. (2015). Synchronous universal droplet logic and control. Nat Phys, 11(7), 588-596.
[158]Zagnoni, M., and Cooper, J. M. (2010). A microdroplet-based shift register. Lab on a Chip, 10(22), 3069-3073.
[159]Korczyk, P. M., Derzsi, L., Jakiela, S., and Garstecki, P. (2013). Microfluidic traps for hard-wired operations on droplets. Lab on a Chip, 13(20), 4096-4102.
[160]van Steijn, V., Korczyk, P. M., Derzsi, L., Abate, A. R., Weitz, D. A., and Garstecki, P. (2013). Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics, 7(2), 024108.
[161]Lee, M., Collins, J. W., Aubrecht, D. M., Sperling, R. A., Solomon, L., Ha, J.-W., Yi, G.-R., Weitz, D. A., and Manoharan, V. N. (2014). Synchronized reinjection and coalescence of droplets in microfluidics. Lab on a Chip, 14(3), 509-513.
[162]Schlicht, B., and Zagnoni, M. (2015). Droplet-interface-bilayer assays in microfluidic passive networks. Scientific Reports, 5, 9951.
[163]Baroud, C. N., Gallaire, F., and Dangla, R. (2010). Dynamics of microfluidic droplets. Lab on a Chip, 10(16), 2032-2045.
[164]Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R. (2001). Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters, 86(18), 4163-4166.
[165]DE MENECH, M., GARSTECKI, P., JOUSSE, F., and STONE, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595, 141-161.
[166]Zeng, W., Li, S. J., and Wang, Z. W. (2016). Linear model of a T-junction microdroplet generator for precise control of droplet size. Soft Matter, 12(18), 4274-4274.
[167]Garstecki, P., Fuerstman, M. J., Stone, H. A., and Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip, 6(3), 437-446.
[168]Christopher, G. F., Noharuddin, N. N., Taylor, J. A., and Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 78(3), 036317.
[169]Anna, S. L., Bontoux, N., and Stone, H. A. (2003). Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 82(3), 364-366.
[170]Nie, Z., Seo, M., Xu, S., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P., and Stone, H. A. (2008). Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 5(5), 585-594.
[171]Dollet, B., van Hoeve, W., Raven, J.-P., Marmottant, P., and Versluis, M. (2008). Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices. Physical Review Letters, 100(3), 034504.
[172]Cubaud, T., and Mason, T. G. (2008). Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 20(5), 053302.
[173]Cramer, C., Fischer, P., and Windhab, E. J. (2004). Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 59(15), 3045-3058.
[174]Cordero, M. L., Gallaire, F., and Baroud, C. N. (2011). Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets. Physics of Fluids, 23(9), 094111.
[175]Utada, A. S., Chu, L.-Y., Fernandez-Nieves, A., Link, D. R., Holtze, C., and Weitz, D. A. (2007). Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics. MRS Bulletin, 32(09), 702-708.
[176]Castro-Hernández, E., Gundabala, V., Fernández-Nieves, A., and Gordillo, J. M. (2009). Scaling the drop size in coflow experiments. New Journal of Physics, 11(7), 075021.
[177]Ward, T., Faivre, M., Abkarian, M., and Stone, H. A. (2005). Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. ELECTROPHORESIS, 26(19), 3716-3724.
[178]Korczyk, P. M., Cybulski, O., Makulska, S., and Garstecki, P. (2011). Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab on a Chip, 11(1), 173-175.
[179]Li, Z., Mak, S. Y., Sauret, A., and Shum, H. C. (2014). Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab on a Chip, 14(4), 744-749.
[180]Wang, L., Zhang, Y., and Cheng, L. (2009). Magic microfluidic T-junctions: Valving and bubbling. Chaos, Solitons & Fractals, 39(4), 1530-1537.
[181]Raven, J.-P., and Marmottant, P. (2006). Periodic Microfluidic Bubbling Oscillator: Insight into the Stability of Two-Phase Microflows. Physical Review Letters, 97(15), 154501.
[182]van Steijn, V., Kreutzer, M. T., and Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 62(24), 7505-7514.
[183]Wang, K., Lu, Y. C., Tan, J., Yang, B. D., and Luo, G. S. (2010). Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluidics and Nanofluidics, 8(6), 813-821.
[184]Murshed, S. M. S., Tan, S. H., Nguyen, N. T., Wong, T. N., and Yobas, L. (2009). Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluidics and Nanofluidics, 6(2), 253-259.
[185]Lin, Y. H., Lee, C. H., and Lee, G. B. (2008). Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. Journal of Microelectromechanical Systems, 17(3), 573-581.
[186]Abate, A. R., Romanowsky, M. B., Agresti, J. J., and Weitz, D. A. (2009). Valve-based flow focusing for drop formation. Applied Physics Letters, 94(2), 023503.
[187]Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M., and Weitz, D. A. (2006). Electric Control of Droplets in Microfluidic Devices. Angewandte Chemie International Edition, 45(16), 2556-2560.
[188]Kim, H., Luo, D., Link, D., Weitz, D. A., Marquez, M., and Cheng, Z. (2007). Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Applied Physics Letters, 91(13), 133106.
[189]Tan, S. H., and Nguyen, N.-T. (2011). Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations. Physical Review E, 84(3), 036317.
[190]Bransky, A., Korin, N., Khoury, M., and Levenberg, S. (2009). A microfluidic droplet generator based on a piezoelectric actuator. Lab on a Chip, 9(4), 516-520.
[191]Jean-Christophe, G., Denis, B., and Vincent, S. (2009). Active connectors for microfluidic drops on demand. New Journal of Physics, 11(7), 075027.
[192]Churski, K., Nowacki, M., Korczyk, P. M., and Garstecki, P. (2013). Simple modular systems for generation of droplets on demand. Lab on a Chip, 13(18), 3689-3697.
[193]Park, S.-Y., Wu, T.-H., Chen, Y., Teitell, M. A., and Chiou, P.-Y. (2011). High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab on a Chip, 11(6), 1010-1012.
[194]Jakiela, S., Makulska, S., Korczyk, P. M., and Garstecki, P. (2011). Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab on a Chip, 11(21), 3603-3608.
[195]Link, D. R., Anna, S. L., Weitz, D. A., and Stone, H. A. (2004). Geometrically Mediated Breakup of Drops in Microfluidic Devices. Physical Review Letters, 92(5), 054503.
[196]Kreutz, J. E., Li, L., Roach, L. S., Hatakeyama, T., and Ismagilov, R. F. (2009). Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous−Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization. Journal of the American Chemical Society, 131(17), 6042-6043.
[197]Schmitz, C. H. J., Rowat, A. C., Koster, S., and Weitz, D. A. (2009). Dropspots: a picoliter array in a microfluidic device. Lab on a Chip, 9(1), 44-49.
[198]Shen, F., Du, W., Kreutz, J. E., Fok, A., and Ismagilov, R. F. (2010). Digital PCR on a SlipChip. Lab on a Chip, 10(20), 2666-2672.
[199]Bui, M.-P. N., Li, C. A., Han, K. N., Choo, J., Lee, E. K., and Seong, G. H. (2011). Enzyme Kinetic Measurements Using a Droplet-Based Microfluidic System with a Concentration Gradient. Analytical Chemistry, 83(5), 1603-1608.
[200]Trivedi, V., Doshi, A., Kurup, G. K., Ereifej, E., Vandevord, P. J., and Basu, A. S. (2010). A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Lab on a Chip, 10(18), 2433-2442.
[201]Neil, S. R. T., Rushworth, C. M., Vallance, C., and Mackenzie, S. R. (2011). Broadband cavity-enhanced absorption spectroscopy for real time, in situ spectral analysis of microfluidic droplets. Lab on a Chip, 11(23), 3953-3955.
[202]Churski, K., Kaminski, T. S., Jakiela, S., Kamysz, W., Baranska-Rybak, W., Weibel, D. B., and Garstecki, P. (2012). Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip, 12(9), 1629-1637.
[203]Yue, J., Falke, F. H., Schouten, J. C., and Nijhuis, T. A. (2013). Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Lab on a Chip, 13(24), 4855-4863.
[204]Niu, X., Zhang, M., Peng, S., Wen, W., and Sheng, P. (2007). Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics, 1(4), 044101.
[205]Elbuken, C., Glawdel, T., Chan, D., and Ren, C. L. (2011). Detection of microdroplet size and speed using capacitive sensors. Sensors and Actuators A: Physical, 171(2), 55-62.
[206]Liu, S., Gu, Y., Le Roux, R. B., Matthews, S. M., Bratton, D., Yunus, K., Fisher, A. C., and Huck, W. T. S. (2008). The electrochemical detection of droplets in microfluidic devices. Lab on a Chip, 8(11), 1937-1942.
[207]Gu, S., Lu, Y., Ding, Y., Li, L., Song, H., Wang, J., and Wu, Q. (2014). A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing. Biosensors and Bioelectronics, 55, 106-112.
[208]Hu, X., Lin, X., He, Q., and Chen, H. (2014). Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes. Journal of Electroanalytical Chemistry, 726, 7-14.
[209]Pekin, D., Skhiri, Y., Baret, J.-C., Le Corre, D., Mazutis, L., Ben Salem, C., Millot, F., El Harrak, A., Hutchison, J. B., Larson, J. W., Link, D. R., Laurent-Puig, P., Griffiths, A. D., and Taly, V. (2011). Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a Chip, 11(13), 2156-2166.
[210]Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D., and Heyman, J. A. (2013). Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protocols, 8(5), 870-891.
[211]Maillot, S., Carvalho, A., Vola, J.-P., Boudier, C., Mely, Y., Haacke, S., and Leonard, J. (2014). Out-of-equilibrium biomolecular interactions monitored by picosecond fluorescence in microfluidic droplets. Lab on a Chip, 14(10), 1767-1774.
[212]Vazquez, B., Qureshi, N., Oropeza-Ramos, L., and Olguin, L. F. (2014). Effect of velocity on microdroplet fluorescence quantified by laser-induced fluorescence. Lab on a Chip, 14(18), 3550-3555.
[213]Choi, J.-W., Kim, G.-J., Lee, S., Kim, J., deMello, A. J., and Chang, S.-I. (2015). A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosensors and Bioelectronics, 67, 497-502.
[214]Cecchini, M. P., Hong, J., Lim, C., Choo, J., Albrecht, T., deMello, A. J., and Edel, J. B. (2011). Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Analytical Chemistry, 83(8), 3076-3081.
[215]Luther, S. K., Will, S., and Braeuer, A. (2014). Phase-specific Raman spectroscopy for fast segmented microfluidic flows. Lab on a Chip, 14(16), 2910-2913.
[216]Wu, L., Wang, Z., Zong, S., and Cui, Y. (2014). Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. Biosensors and Bioelectronics, 62, 13-18.
[217]Hidi, I. J., Jahn, M., Weber, K., Cialla-May, D., and Popp, J. (2015). Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Physical Chemistry Chemical Physics, 17(33), 21236-21242.
[218]Meier, T. A., Beulig, R. J., Klinge, E., Fuss, M., Ohla, S., and Belder, D. (2015). On-chip monitoring of chemical syntheses in microdroplets via surface-enhanced Raman spectroscopy. Chemical Communications, 51(41), 8588-8591.
[219]Polynkin, P., Polynkin, A., Peyghambarian, N., and Mansuripur, M. (2005). Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters, 30(11), 1273-1275.
[220]Zhang, L., Wang, P., Xiao, Y., Yu, H., and Tong, L. (2011). Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab on a Chip, 11(21), 3720-3724.
[221]Li, K., Liu, G., Wu, Y., Hao, P., Zhou, W., and Zhang, Z. (2014). Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta, 120, 419-424.
[222]Li, Z. Y., Xu, Y. X., Fang, W., Tong, L. M., and Zhang, L. (2015). Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip. Sensors, 15(3), 4890-4898.
[223]Li, W., Young, E. W. K., Seo, M., Nie, Z., Garstecki, P., Simmons, C. A., and Kumacheva, E. (2008). Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 4(2), 258-262.
[224]Li, W., Greener, J., Voicu, D., and Kumacheva, E. (2009). Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab on a Chip, 9(18), 2715-2721.
[225]Nisisako, T., and Torii, T. (2008). Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab on a Chip, 8(2), 287-293.
[226]Conchouso, D., Castro, D., Khan, S. A., and Foulds, I. G. (2014). Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab on a Chip, 14(16), 3011-3020.
[227]Romanowsky, M. B., Abate, A. R., Rotem, A., Holtze, C., and Weitz, D. A. (2012). High throughput production of single core double emulsions in a parallelized microfluidic device. Lab on a Chip, 12(4), 802-807.
[228]Barbier, V., Willaime, H., Tabeling, P., and Jousse, F. (2006). Producing droplets in parallel microfluidic systems. Physical Review E, 74(4).
[229]Chokkalingam, V., Herminghaus, S., and Seemann, R. (2008). Self-synchronizing pairwise production of monodisperse droplets by microfluidic step emulsification. Applied Physics Letters, 93(25), 254101.
[230]Hong, J., Choi, M., Edel, J. B., and deMello, A. J. (2010). Passive self-synchronized two-droplet generation. Lab on a Chip, 10(20), 2702-2709.
[231]Hashimoto, M., Shevkoplyas, S. S., Zasońska, B., Szymborski, T., Garstecki, P., and Whitesides, G. M. (2008). Formation of Bubbles and Droplets in Parallel, Coupled Flow-Focusing Geometries. Small, 4(10), 1795-1805.
[232]Guzowski, J., Korczyk, P. M., Jakiela, S., and Garstecki, P. (2011). Automated high-throughput generation of droplets. Lab on a Chip, 11(21), 3593-3595.
[233]Ahn, B., Lee, K., Lee, H., Panchapakesan, R., and Oh, K. W. (2011). Parallel synchronization of two trains of droplets using a railroad-like channel network. Lab on a Chip, 11(23), 3956-3962.
[234]Xu, L., Lee, H., Panchapakesan, R., and Oh, K. W. (2012). Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab on a Chip, 12(20), 3936-3942.
[235]Lee, H., Xu, L., and Oh, K. W. (2014). Droplet-based microfluidic washing module for magnetic particle-based assays. Biomicrofluidics, 8(4), 044113.
[236]Dukler, A. E., Wicks, M., and Cleveland, R. G. (1964). Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE Journal, 10(1), 44-51.
[237]Beattie, D. R. H., and Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. International Journal of Multiphase Flow, 8(1), 83-87.
[238]Hoyt, L. F. (1934). New Table of the Refractive Index of Pure Glycerol at 20°C. Industrial & Engineering Chemistry, 26(3), 329-332.
[239]Koohyar, F., Rostami, A. A., Chaichi, M. J., and Kiani, F. (2013). Study on Thermodynamic Properties for Binary Systems of Water plus L-Cysteine Hydrochloride Monohydrate, Glycerol, and D-Sorbitol at Various Temperatures. Journal of Chemistry.
[240]方柏璇. (2011). 毛細-重力閥門及其在整合式尿液肌酸酐檢測晶片之研究與應用. 碩士學位論文, 國立台灣大學, 台灣.[241]Wang, A.-B., Fang, P.-H., Chu Su, Y., Hsieh, Y.-W., Lin, C.-W., Chen, Y.-T., and Hsu, Y.-C. (2016). A novel lab-on-a-chip design by sequential capillary–gravitational valves for urinary creatinine detection. Sensors and Actuators B: Chemical, 222, 721-727.