跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝育文
研究生(外文):Yu-Wen Hsieh
論文名稱:多管微流道同步機制與高通量「太極塗佈」系統之開發研究
論文名稱(外文):Development of synchronization for multi-microchannel and high-throughput “Air-Bubble Coating” system
指導教授:王安邦王安邦引用關係
指導教授(外文):An-Bang Wang
口試委員:邱文英陳朝光程章林楊安石劉大佼謝國煌
口試委員(外文):Wen-Yen ChiuChao-Kuang ChenJang-Lin ChenAn-Shik YangTa-Jo LiuKuo-Huang Hsieh
口試日期:2016-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:301
中文關鍵詞:太極塗佈法液氣微雙相流即時尺寸控制即時檢測同步機制
外文關鍵詞:Air-Bubble Coatinggas-liquid micro-two-phase flowreal-time size controlon-line detectionsynchronization mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:567
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
隨著消費性電子產品的需求逐年提升,各式各樣的塗佈技術已被大量應用於高科技產業,其中不需母模的圖案化塗佈技術因其環保節能的特性,已漸漸成為發展主流。太極塗佈法即是一新興的不需母模圖案化塗佈技術,透過將間斷式的液氣微雙相流連續地塗佈於基材上而產生非連續的塗佈圖案,具有作動簡單、塗料黏度適用範圍廣及可兼容捲對捲(roll-to-roll)方式生產等優越特性。本研究為將此新興技術推廣至工業化量產的前導型研究,根據所需開發的關鍵技術將論文架構分為三大部分:
I. 液氣微雙相流即時尺寸控制系統之開發:
此部分首先探討流體輸入源對液氣微雙相流尺寸均勻性的影響,發現一般慣用的針筒式幫浦將對微雙相流尺寸產生約±20%的尺寸變異,而定壓力輸入源則能產生尺寸變異係數小於0.73%的均勻微氣泡與微液滴。接著透過等效單相流模型分析,成功預測出太極塗佈法必要之段塞流模態的操作區間,並找出影響此操作區間大小的關鍵因子:微流管道幾何流阻比G*。最後則開發出一可即時控制液氣微雙相流尺寸變化的閉迴路系統,於微液滴和微氣泡尺寸的即時控制變化範圍可達一個數量級,而整體尺寸操控之誤差小於±3%。
II. 液氣微雙相流即時偵測系統之開發:
本研究共開發出電阻感測器與微光纖感測器兩種液氣微雙相流即時偵測系統。電阻式感測系統透過液體與氣體導電程度的差異來辨別彼此,於液氣微雙相流流速和尺寸的量測誤差分別在±1%和±6%範圍內,但工作流體限定為導體。微光纖偵測系統則透過工作流體的折射率變化之感測獲得氣液介面資訊,僅需極微量(100 nL)的檢體便可同時進行微雙相流折射率、流速與尺寸的即時量測,對折射率、流速和尺寸的量測解析度分別為2 × 10-4、50 μm/s和5 μm,足以應用於太極塗佈法之精密定位。
III. 多管道液氣微雙相流同步產生與塗佈機制開發:
本文共研究開發出三種被動式共流體源同步產生液氣微雙相流的結構。第一種混合T型與梯狀微流道設計,利用流體耦合性於雙管道中反相產生液氣微雙相流,且隨著兩管道中的微氣泡越往下游移動,兩者間的相位差會逐漸縮小至接近同步,但難以拓展至三管道以上的應用。第二種為雙擴展角毛細閥門設計,可於雙管道中產生相位相同的液氣微雙相流,但卻有作動頻率較慢的問題。第三種則為三平行聚焦型微流道結合下游梯狀流道的設計,可於三管道中以高頻率產生同相的液氣微雙相流,且易於平行擴展至多流道。而於多管道液氣微雙相流同步塗佈部分,本研究以哈根-泊肅葉定律為基礎,開發出簡易控制多管道分流均勻性的技術,可使各管道間分流誤差小於±1%。此外,本研究也已成功測試出三平行管道可同步塗佈的操作區間,各管間的相位差控制在±4.6º以內。於十管的同步塗佈測試中,則能成功產生相位差小於±7.5º的液氣微雙相流。

With the growing demand for the rapid changes of consumer electronics, a variety of coating methods have been applied in high-tech industries. Among these coating techniques, pattern coating technology has gradually become the mainstream due to its eco-friendly features. Air-Bubble Coating is a novel mask-less pattern coating method, and it generates discontinuous patterns by continuously coating the segmented gas-liquid micro-two-phase flow onto the substrate. It has superior characteristics such as simple operation, wide viscosity applicable range, and good compatibility to roll-to-roll process. This research aims to grow Air-Bubble Coating into an industrial mass production technique. According to the required key technologies, the structure of this dissertation work is divided into three major parts:
I. The development of real-time size control system for gas-liquid micro-two-phase flow:
First of all, the effect of fluid driven sources on the size uniformity of gas-liquid micro-two-phase flow has been investigated. The commonly used syringe pump would produce about ±20% bubble/droplet size variation while the constant pressure source could generate uniform size of bubbles/droplets with the coefficient of variation less than 0.73%. Second, the operational range of slug flow, which is essential for Air-Bubble Coating, can be well-predicted based on the equivalent single-phase flow model, and the channel geometric factor G* has been identified as the key parameter that affects the scope of slug flow region. Finally, a closed-loop system for controlling the size of gas-liquid micro-two-phase flow in real-time has been developed. The bubble/droplet size variable range of this system reaches one order of magnitude, and the overall size control error is less than ±3%.
II. The development of on-line detection system for gas-liquid micro-two-phase flow:
An electrical resistance sensing system and an optical microfiber sensing system have been developed to on-line detect the gas-liquid micro-two-phase flow. For electrical resistance detection system, the conductivity difference of liquid and gas was applied to identify the gas-liquid interface, and the velocity and size measurement errors were within ±1% and ±6%, respectively. However, in order to operate properly, the continuous phase fluid must be conductive. In contrast, the microfiber detection system obtains the information of gas-liquid interface based on the refractive index change of the working fluid. With only tiny sample volume (100 nL), the on-line detection of refractive index, velocity, and size can be performed simultaneously. The measurement resolution for refractive index, velocity, and size are 2 × 10-4, 50 μm/s and 5 μm, respectively. This optical sensing system is robust enough for the precision positioning of Air-Bubble Coating.
III. The development of synchronization for the generation and coating of multi-channel gas-liquid micro-two-phase flow:
Three microfluidic structures for passively maintaining the synchronicity of gas-liquid micro-two-phase flow generation with common fluid sources have been developed. The first microfluidic structure combines the design of T-junction and ladder channels, and it utilizes fluid coupling to generate out-of-phase gas-liquid micro-two-phase flow in two parallel channels. The phase lag between these two channels gradually approaches zero as the bubbles/droplets flow downstream. However, it is difficult to apply this design to more than two parallel channels. The second microfluidic structure is two capillary valves with dual diffusor. It can produce in-phase gas-liquid micro-two-phase flow in two parallel channels, but the working frequency is much lower than the first design. The third one is a three parallel flow-focusing device with downstream ladder channels. It can generate in-phase gas-liquid micro-two-phase flow between all channels with high frequency, and it is suitable to scale up to multi-channel applications. For the multi-channel coating of gas-liquid micro-two-phase flow, a simple technique has been developed to control the uniformity of flow distribution within parallel channels based on Hagen-Poiseuille''s law, and the diversion error is less than ±1%. Furthermore, the operational range for three channel synchronization coating has been investigated. The phase difference between each channel can be controlled within ±4.6º. As for ten parallel channels coating, the phase difference of gas-liquid micro-two-phase flow among all channels was less than ±7.5º.

謝誌 i
口試委員審定書 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xxvi
符號表 xxvii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
第二章 文獻回顧 6
2.1 塗佈技術簡介 6
2.1.1 面式塗佈 13
2.1.2 圖案化塗佈 22
2.2 微雙相流技術簡介 31
2.2.1 微雙相流產生方法 39
2.2.2 微雙相流檢測技術 57
2.2.3 微雙相流平行產生技術 65
第三章 實驗設備與研究方法 75
3.1 實驗設備 75
3.1.1 微流體晶片加工設備 75
3.1.2 工作流體調配裝置 77
3.1.3 流體傳輸裝置 79
3.1.4 顯影裝置 82
3.1.5 訊號產生與擷取裝置 86
3.1.6 雷射光源系統 88
3.1.7 塗佈系統 91
3.2 研究方法 96
3.2.1 微流體晶片製作 96
3.2.2 微光纖製作 108
3.2.3 微雙相流產生與塗佈實驗操作 109
3.2.4 影像分析程式 116
第四章 結果與討論 126
4.1 液氣微雙相流產生與尺寸控制系統開發 126
4.1.1 流體源對液氣微雙相流產生穩定性之影響探討 126
4.1.2 壓力驅動液氣微雙相流產生預測模型 141
4.1.3 微液滴與微氣泡即時尺寸操控系統 148
4.2 液氣微雙相流偵測系統開發 159
4.2.1 電極偵測系統 159
4.2.2 微光纖偵測系統 169
4.3 高通量液氣微雙相流產生與塗佈之同步機制開發 184
4.3.1 T型與梯狀混合式雙管道微雙相流同步機制開發 185
4.3.2 毛細閥門式雙管道微雙相流同步機制開發 188
4.3.3 獨立流體源於三管道微雙相流產生之同步性測試 201
4.3.4 微雙相流三管道分流模型分析 208
4.3.5 共流體源於三管道微雙相流產生之同步機制開發 212
4.3.6 三管道太極塗佈法之同步性測試 222
4.3.7 微雙相流十管道分流模型分析 232
4.3.8 十管道太極塗佈法之同步性測試 235
第五章 結論與未來展望 238
5.1 結論 238
5.2 未來展望 241
附錄 243
附錄一 精密四軸塗佈系統接線配置 243
附錄二 微銑刀與微鑽針對壓克力之加工參數 246
附錄三 MATLAB微雙相流尺寸分析程式碼 247
附錄四 MATLAB微雙相流產生時機分析程式碼 254
附錄五 LabVIEW微雙相流尺寸即時分析程式碼 258
附錄六 微光纖偵測系統於nc ≥ nf條件之量測結果 269
附錄七 重力驅動式微光纖偵測系統 271
附錄八 毛細-重力閥門理論分析 272
參考文獻 274
作者簡介 294

[1]美濃廣進勝油紙傘. from http://www.interactive.idv.tw/cc/stworks/tcweb/umbrella_49648133/
[2]林怡君. (2011). 全新式精密圖案塗佈技術之開發與研究-「太極塗佈法」. 博士學位論文, 國立台灣大學, 台灣.
[3]Wang, A.-B., Lin, I.-C., Wang, Y.-H., Lee, C.-K., and Lin, S. (2012). EU Patent No. EP2014471 ( B1 ).
[4]Wang, A.-B., Lin, I.-C., Wang, Y.-H., and Lee, C.-K. (2010). US Patent No. 07824736 ( B2 ).
[5]王安邦, 林怡君, 王怡華, 李世光, and 林世明. (2013). JP Patent No. 5248847 ( B2 ).
[6]왕안방, 린이천, 왕이후아, 이치궁, and 린쉬밍. (2011). KR Patent No. 1020080055684 ( B1 ).
[7]王安邦, 林怡君, 王怡華, 李世光, and 林世明. (2015). TW Patent No. I466732.
[8]王安邦, 林怡君, 王怡华, and 李世光. (2010). CN Patent No. CN101264475 ( B ).
[9]Das, R. (2009). Printed and Flexible Electronics: Global Markets and Trends 2009-2019. Association of Industrial Metallizers, Coaters and Laminators Fall Technical Conference and 23rd International Vacuum Web Coating Conference 2009, Amelia Island, Florida, USA.
[10]Liu, Y., Cui, T., and Varahramyan, K. (2003). All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electronics, 47(9), 1543-1548.
[11]Pudas, M., Halonen, N., Granat, P., and Vähäkangas, J. (2005). Gravure printing of conductive particulate polymer inks on flexible substrates. Progress in Organic Coatings, 54(4), 310-316.
[12]潘柏廷. (2010). 精微圖案毛細管塗佈之研究. 碩士學位論文, 國立台灣大學, 台灣.
[13]Lim, J., Kim, J., Yoon, Y. J., Kim, H., Yoon, H. G., Lee, S.-N., and Kim, J. (2012). All-inkjet-printed Metal-Insulator-Metal (MIM) capacitor. Current Applied Physics, 12, Supplement 1, e14-e17.
[14]劉祐汝. (2012). 全新狹縫式塗佈頭製程技術之開發及其於積層陶瓷電容之應用. 碩士學位論文, 國立台灣大學, 台灣.
[15]Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P. (2000). High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science, 290(5499), 2123-2126.
[16]Katz, H. E. (2004). Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics. Chemistry of Materials, 16(23), 4748-4756.
[17]Fan, Z., Ho, J. C., Jacobson, Z. A., Yerushalmi, R., Alley, R. L., Razavi, H., and Javey, A. (2008). Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Letters, 8(1), 20-25.
[18]Kim, T.-H., Cho, K.-S., Lee, E. K., Lee, S. J., Chae, J., Kim, J. W., Kim, D. H., Kwon, J.-Y., Amaratunga, G., Lee, S. Y., Choi, B. L., Kuk, Y., Kim, J. M., and Kim, K. (2011). Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 5(3), 176-182.
[19]Kang, B., Lee, W. H., and Cho, K. (2013). Recent Advances in Organic Transistor Printing Processes. ACS Applied Materials & Interfaces, 5(7), 2302-2315.
[20]Koo, H. S., Chen, M., Pan, P. C., Chou, L. T., Wu, F. M., Chang, S. J., and Kawai, T. (2006). Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique. Displays, 27(3), 124-129.
[21]Koo, H.-S., Chen, M., and Pan, P.-C. (2006). LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology. Thin Solid Films, 515(3), 896-901.
[22]Lee, T.-M., Choi, Y.-J., Nam, S.-Y., You, C.-W., Na, D.-Y., Choi, H.-C., Shin, D.-Y., Kim, K.-Y., and Jung, K.-I. (2008). Color filter patterned by screen printing. Thin Solid Films, 516(21), 7875-7880.
[23]Chang, Y.-G., Nam, S.-H., Kim, N.-K., Kook, Y.-H., Kim, J., Yoo, S.-S., Kim, C.-D., Kang, I.-B., and Chung, I.-J. (2009). A study of roll-printing technology for TFT-LCD fabrication. Journal of the Society for Information Display, 17(4), 301-307.
[24]Kim, Y. D., Kim, J. P., Kwon, O. S., and Cho, I. H. (2009). The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters. Dyes and Pigments, 81(1), 45-52.
[25]Tien, C.-H., Hung, C.-H., and Yu, T.-H. (2009). Microlens Arrays by Direct-Writing Inkjet Print for LCD Backlighting Applications. Journal of Display Technology, 5(5), 147-151.
[26]Grennan, K., J. Killard, A., and R. Smyth, M. (2001). Physical Characterizations of a Screen-Printed Electrode for Use in an Amperometric Biosensor System. Electroanalysis, 13(8-9), 745-750.
[27]Barron, J. A., Rosen, R., Jones-Meehan, J., Spargo, B. J., Belkin, S., and Ringeisen, B. R. (2004). Biological laser printing of genetically modified Escherichia coli for biosensor applications. Biosensors and Bioelectronics, 20(2), 246-252.
[28]Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., and Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026.
[29]Wu, P., Hogrebe, P., and Grainger, D. W. (2006). DNA and protein microarray printing on silicon nitride waveguide surfaces. Biosensors and Bioelectronics, 21(7), 1252-1263.
[30]Tudorache, M., and Bala, C. (2007). Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry, 388(3), 565-578.
[31]Hossain, S. M. Z., Ozimok, C., Sicard, C., Aguirre, S. D., Ali, M. M., Li, Y., and Brennan, J. D. (2012). Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 403(6), 1567-1576.
[32]Li, J., Rossignol, F., and Macdonald, J. (2015). Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab on a Chip, 15(12), 2538-2558.
[33]Varghese, D., Deshpande, M., Xu, T., Kesari, P., Ohri, S., and Boland, T. (2005). Advances in tissue engineering: Cell printing. The Journal of Thoracic and Cardiovascular Surgery, 129(2), 470-472.
[34]Xu, T., Jin, J., Gregory, C., Hickman, J. J., and Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93-99.
[35]Karoly, J., Cyrille, N., Francoise, M., Keith, M., Gordana, V.-N., and Gabor, F. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2(2), 022001.
[36]Nathan, R. S., David, T. C., Yong, H., Nurazhani Abdul, R., Yubing, X., and Douglas, B. C. (2010). Laser-based direct-write techniques for cell printing. Biofabrication, 2(3), 032001.
[37]Pati, F., Ha, D.-H., Jang, J., Han, H. H., Rhie, J.-W., and Cho, D.-W. (2015). Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 62, 164-175.
[38]Chen, Y., Au, J., Kazlas, P., Ritenour, A., Gates, H., and McCreary, M. (2003). Electronic paper: Flexible active-matrix electronic ink display. Nature, 423(6936), 136-136.
[39]Liang, R. C., Hou, J., Zang, H., Chung, J., and Tseng, S. (2003). Microcup® displays: Electronic paper by roll-to-roll manufacturing processes. Journal of the Society for Information Display, 11(4), 621-628.
[40]Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. (2011). PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada.
[41]McCollough, G. T., Rankin, C. M., and Weiner, M. L. (2005). 6.1: Roll-to-Roll Manufacturing Considerations for Flexible, Cholesteric Liquid Crystal (ChLC) Display Media. SID Symposium Digest of Technical Papers, 36(1), 64-67.
[42]Khan, A., Shiyanovskaya, I., Schneider, T., Montbach, E., Davis, D. J., Miller, N., Marhefka, D., Ernst, T., Nicholson, F., and Doane, J. W. (2007). Progress in flexible and drapable reflective cholesteric displays. Journal of the Society for Information Display, 15(1), 9-16.
[43]Lee, B.-Y., and Lee, J.-H. (2011). Printable flexible cholesteric capsule display with a fine resolution of RGB subpixels. Current Applied Physics, 11(6), 1389-1393.
[44]Pardo, D. A., Jabbour, G. E., and Peyghambarian, N. (2000). Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices. Advanced Materials, 12(17), 1249-1252.
[45]Villani, F., Vacca, P., Nenna, G., Valentino, O., Burrasca, G., Fasolino, T., Minarini, C., and della Sala, D. (2009). Inkjet Printed Polymer Layer on Flexible Substrate for OLED Applications. The Journal of Physical Chemistry C, 113(30), 13398-13402.
[46]Katsuhara, M., Yagi, I., Yumoto, A., Noda, M., Hirai, N., Yasuda, R., Moriwaki, T., Ushikura, S., Imaoka, A., Urabe, T., and Nomoto, K. (2010). A flexible OLED display with an OTFT backplane made by scalable manufacturing process. Journal of the Society for Information Display, 18(6), 399-404.
[47]Qi, Y., Jafferis, N. T., Lyons, K., Lee, C. M., Ahmad, H., and McAlpine, M. C. (2010). Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters, 10(2), 524-528.
[48]Li, Y., Torah, R., Beeby, S., and Tudor, J. (2012, 28-31 Oct. 2012). An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications. Paper presented at the Sensors, 2012 IEEE.
[49]El-Kady, M. F., and Kaner, R. B. (2013). Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun, 4, 1475.
[50]Pagliaro, M., Ciriminna, R., and Palmisano, G. (2008). Flexible Solar Cells. ChemSusChem, 1(11), 880-891.
[51]Krebs, F. C., Fyenbo, J., and Jorgensen, M. (2010). Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. Journal of Materials Chemistry, 20(41), 8994-9001.
[52]Galagan, Y., J.M. Rubingh, J.-E., Andriessen, R., Fan, C.-C., W.M. Blom, P., C. Veenstra, S., and M. Kroon, J. (2011). ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials and Solar Cells, 95(5), 1339-1343.
[53]Subramanian, V., Frechet, J. M. J., Chang, P. C., Huang, D. C., Lee, J. B., Molesa, S. E., Murphy, A. R., Redinger, D. R., and Volkman, S. K. (2005). Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices. Proceedings of the IEEE, 93(7), 1330-1338.
[54]Abad, E., Zampolli, S., Marco, S., Scorzoni, A., Mazzolai, B., Juarros, A., Gómez, D., Elmi, I., Cardinali, G. C., Gómez, J. M., Palacio, F., Cicioni, M., Mondini, A., Becker, T., and Sayhan, I. (2007). Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic. Sensors and Actuators B: Chemical, 127(1), 2-7.
[55]Rida, A., Yang, L., Vyas, R., and Tentzeris, M. M. (2009). Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications. IEEE Antennas and Propagation Magazine, 51(3), 13-23.
[56]Lee, C. S., Kim, J. Y., Lee, D. E., Koo, Y. K., Joo, J., Han, S., Beag, Y. W., and Koh, S. K. (2003). Organic Based Flexible Speaker Through Enhanced Conductivity of PEDOT/PSS with Various Solvents. Synthetic Metals, 135–136, 13-14.
[57]Yu, X., Rajamani, R., Stelson, K. A., and Cui, T. (2006). Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sensors and Actuators A: Physical, 132(2), 626-631.
[58]Shin, K.-Y., Hong, J.-Y., and Jang, J. (2011). Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chemical Communications, 47(30), 8527-8529.
[59]Chu, M., Kudo, H., Shirai, T., Miyajima, K., Saito, H., Morimoto, N., Yano, K., Iwasaki, Y., Akiyoshi, K., and Mitsubayashi, K. (2009). A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomedical Microdevices, 11(4), 837-842.
[60]Jung, J., Kim, S. J., Lee, K. W., Yoon, D. H., Kim, Y.-g., Kwak, H. Y., Dugasani, S. R., Park, S. H., and Kim, H. J. (2014). Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosensors and Bioelectronics, 55, 99-105.
[61]Pavinatto, F. J., Paschoal, C. W. A., and Arias, A. C. (2015). Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Biosensors and Bioelectronics, 67, 553-559.
[62]Fouad, O. A., Ismail, A. A., Zaki, Z. I., and Mohamed, R. M. (2006). Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Applied Catalysis B: Environmental, 62(1–2), 144-149.
[63]Richter, G., Hillerich, K., Gianola, D. S., Mönig, R., Kraft, O., and Volkert, C. A. (2009). Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Letters, 9(8), 3048-3052.
[64]Cuellar, E. L., Martínez-de la Cruz, A., Torres, N. C., and Cortez, J. O. (2015). Deposition of BiOBr thin films by thermal evaporation and evaluation of its photocatalytic activity. Catalysis Today, 252, 2-6.
[65]Rossnagel, S. M., and Hopwood, J. (1993). Magnetron sputter deposition with high levels of metal ionization. Applied Physics Letters, 63(24), 3285-3287.
[66]Chiou, W.-T., Wu, W.-Y., and Ting, J.-M. (2003). Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials, 12(10–11), 1841-1844.
[67]Torimoto, T., Okazaki, K.-i., Kiyama, T., Hirahara, K., Tanaka, N., and Kuwabata, S. (2006). Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Applied Physics Letters, 89(24), 243117.
[68]Hüttinger, K. J. (1998). CVD in Hot Wall Reactors—The Interaction Between Homogeneous Gas-Phase and Heterogeneous Surface Reactions. Chemical Vapor Deposition, 4(4), 151-158.
[69]Jun, C.-S., and Lee, K.-H. (2000). Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method (cold-wall). Journal of Membrane Science, 176(1), 121-130.
[70]Hu, J., and Gordon, R. G. (1992). Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. Journal of Applied Physics, 72(11), 5381-5392.
[71]Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., and Ruoff, R. S. (2011). Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 133(9), 2816-2819.
[72]Meyerson, B. S. (1986). Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Applied Physics Letters, 48(12), 797-799.
[73]Boyer, P. K., Roche, G. A., Ritchie, W. H., and Collins, G. J. (1982). Laser‐induced chemical vapor deposition of SiO2. Applied Physics Letters, 40(8), 716-719.
[74]Yugo, S., Kanai, T., Kimura, T., and Muto, T. (1991). Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Applied Physics Letters, 58(10), 1036-1038.
[75]Matsui, S., Kaito, T., Fujita, J.-i., Komuro, M., Kanda, K., and Haruyama, Y. (2000). Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. Journal of Vacuum Science & Technology B, 18(6), 3181-3184.
[76]Maillard, M., Bleyer, J., Andrieux, A. L., Boujlel, J., and Coussot, P. (2016). Dip-coating of yield stress fluids. Physics of Fluids, 28(5), 053102.
[77]Scriven, L. E. (1988). Physics and Applications of DIP Coating and Spin Coating. MRS Online Proceedings Library Archive, 121, 717 (713 pages).
[78]White, D. A., and Tallmadge, J. A. (1965). Theory of drag out of liquids on flat plates. Chemical Engineering Science, 20(1), 33-37.
[79]Faustini, M., Louis, B., Albouy, P. A., Kuemmel, M., and Grosso, D. (2010). Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions. The Journal of Physical Chemistry C, 114(17), 7637-7645.
[80]Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H., and Zink, J. I. (1997). Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 389(6649), 364-368.
[81]Sahu, N., Parija, B., and Panigrahi, S. (2009). Fundamental understanding and modeling of spin coating process: A review. Indian Journal of Physics, 83(4), 493-502.
[82]Extrand, C. W. (1994). Spin coating of very thin polymer films. Polymer Engineering & Science, 34(5), 390-394.
[83]Zhang, G., Wang, Y., and Ma, J. (2002). Bingham plastic fluid flow model for ceramic tape casting. Materials Science and Engineering: A, 337(1–2), 274-280.
[84]Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 93(4), 394-412.
[85]Benkreira, H., Edwards, M. F., and Wilkinson, W. L. (1981). Roll coating of purely viscous liquids. Chemical Engineering Science, 36(2), 429-434.
[86]盛東城. (1989). 滾筒式表面塗佈工程的研究. 碩士學位論文, 國立清華大學, 台灣.
[87]Ning, C.-Y., Tsai, C.-C., and Liu, T.-J. (1996). The effect of polymer additives on extrusion slot coating. Chemical Engineering Science, 51(12), 3289-3297.
[88]Charbonneaux, T. G. (1991). Design of Sheet Dies for Minimum Residence Time Distribution: A Review. Polymer-Plastics Technology and Engineering, 30(7), 665-684.
[89]Yen, Y.-K., Jiang, Y.-W., Chang, S.-C., and Wang, A.-B. (2014). Western Blotting by Thin-Film Direct Coating. Analytical Chemistry, 86(10), 5164-5170.
[90]Liu, C.-Y., Lu, D.-C., Jiang, Y.-W., Yen, Y.-K., Chang, S.-C., and Wang, A.-B. (2016). Easy and Fast Western Blotting by Thin-Film Direct Coating with Suction. Analytical Chemistry.
[91]Schweizer, P. M., and Kistler, S. F. (2012). Liquid Film Coating: Scientific principles and their technological implications: Springer Netherlands.
[92]Carvalho, M. S., and Kheshgi, H. S. (2000). Low-flow limit in slot coating: Theory and experiments. AIChE Journal, 46(10), 1907-1917.
[93]Romero, O. J., Suszynski, W. J., Scriven, L. E., and Carvalho, M. S. (2004). Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. Journal of Non-Newtonian Fluid Mechanics, 118(2–3), 137-156.
[94]Russell, T. A. (1956). US Patent No. 2761791 ( A ).
[95]Christodoulou, K. N., and Scriven, L. E. (1989). The fluid mechanics of slide coating. Journal of Fluid Mechanics, 208, 321-354.
[96]Hens, J., and Van Abbenyen, W. (1997). Slide Coating. In S. F. Kistler & P. M. Schweizer (Eds.), Liquid Film Coating: Scientific principles and their technological implications (pp. 427-462). Dordrecht: Springer Netherlands.
[97]Schweizer, P. M. (2000). Curtain coating technology can mean big benefits. Paper, Film and Foil Converter, 74(3), 102.
[98]Pritchard, W. G. (1986). Instability and chaotic behaviour in a free-surface flow. Journal of Fluid Mechanics, 165, 1-60.
[99]Weinstein, S. J., Clarke, A., Moon, A. G., and Simister, E. A. (1997). Time-dependent equations governing the shape of a two-dimensional liquid curtain, Part 1: Theory. Physics of Fluids, 9(12), 3625-3636.
[100]Mäkelä, T., Haatainen, T., Majander, P., and Ahopelto, J. (2007). Continuous roll to roll nanoimprinting of inherently conducting polyaniline. Microelectronic Engineering, 84(5–8), 877-879.
[101]Kipphan, H. (2001). Handbook of Print Media: Technologies and Production Methods: Springer.
[102]Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1996). Imprint lithography with 25-nanometer resolution. Science, 272(5258), 85.
[103]Lee, D. H., Choi, J. S., Chae, H., Chung, C. H., and Cho, S. M. (2009). Screen-printed white OLED based on polystyrene as a host polymer. Current Applied Physics, 9(1), 161-164.
[104]Sndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Materials Today, 15(1–2), 36-49.
[105]Ghafar-Zadeh, E., Sawan, M., and Therriault, D. (2007). Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sensors and Actuators A: Physical, 134(1), 27-36.
[106]Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X. Y., Park, S. I., Xiong, Y. J., Yoon, J., Nuzzo, R. G., Rogers, J. A., and Lewis, J. A. (2009). Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 323(5921), 1590-1593.
[107]Ahn, B. Y., Shoji, D., Hansen, C. J., Hong, E., Dunand, D. C., and Lewis, J. A. (2010). Printed Origami Structures. Advanced Materials, 22(20), 2251-2254.
[108]Barbulovic-Nad, I., Lucente, M., Sun, Y., Zhang, M., Wheeler, A. R., and Bussmann, M. (2006). Bio-microarray fabrication techniques - A review. Critical Reviews in Biotechnology, 26(4), 237-259.
[109]Milbourn, T. M., and Barth, J. J. (1994). US Patent No. 5360629 ( A ).
[110]Harada, Y., Yamamoto, K., Hironaka, K., Kobara, H., Matsui, E., Okada, K., and Yoshikawa, T. (1996). US Patent No. 5582868 ( A ).
[111]Liu, T. J., and Chang, E. R. (2008). US Patent No. 7416608 ( B2 ).
[112]Derby, B. (2010). Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research, 40(1), 395-414.
[113]Christanti, Y., and Walker, L. M. (2002). Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. Journal of Rheology, 46(3), 733-748.
[114]Naiman, M. (1965). US Patent No. 3179042 ( A ).
[115]Zoltan, S. I. (1972). US Patent No. 3683212 ( A ).
[116]Jurgen, D., Ana Claudia, A., William, W., Rene, L., Steve, R., Brent, K., and Robert, S. (2007). Jet-Printed Active-Matrix Backplanes and Electrophoretic Displays. Japanese Journal of Applied Physics, 46(3S), 1363.
[117]Mette, A., Richter, P. L., Hörteis, M., and Glunz, S. W. (2007). Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications, 15(7), 621-627.
[118]Mahajan, A., Frisbie, C. D., and Francis, L. F. (2013). Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines. ACS Applied Materials & Interfaces, 5(11), 4856-4864.
[119]Goth, C., Putzo, S., and Franke, J. (2011, May 31 2011-June 3 2011). Aerosol Jet printing on rapid prototyping materials for fine pitch electronic applications. Paper presented at the 2011 IEEE 61st Electronic Components and Technology Conference (ECTC).
[120]Wang, A.-B., Lin, I. C., Hsieh, Y.-W., Shih, W.-P., and Wu, G.-W. (2011). Effective pressure and bubble generation in a microfluidic T-junction. Lab on a Chip, 11(20), 3499-3507.
[121]林義暐. (2010). 微二相流產生器之研究. 碩士學位論文, 國立台灣大學, 台灣.
[122]Gunther, A., Khan, S. A., Thalmann, M., Trachsel, F., and Jensen, K. F. (2004). Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 4(4), 278-286.
[123]Kinoshita, H., Kaneda, S., Fujii, T., and Oshima, M. (2007). Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip, 7(3), 338-346.
[124]Song, H., Tice, J. D., and Ismagilov, R. F. (2003). A Microfluidic System for Controlling Reaction Networks in Time. Angewandte Chemie, 115(7), 792-796.
[125]Liu, D., Liang, G., Lei, X., Chen, B., Wang, W., and Zhou, X. (2012). Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor. Analytica Chimica Acta, 718, 58-63.
[126]Zheng, B., Tice, J. D., Roach, L. S., and Ismagilov, R. F. (2004). A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction. Angewandte Chemie International Edition, 43(19), 2508-2511.
[127]Hoang, P. H., and Dien, L. Q. (2014). Fast synthesis of an inorganic-organic block copolymer in a droplet-based microreactor. RSC Advances, 4(16), 8283-8288.
[128]Hoang, P. H., Yoon, K.-B., and Kim, D.-P. (2012). Synthesis of hierarchically porous zeolite A crystals with uniform particle size in a droplet microreactor. RSC Advances, 2(12), 5323-5328.
[129]Kim, Y. H., Zhang, L., Yu, T., Jin, M., Qin, D., and Xia, Y. (2013). Droplet-Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small, 9(20), 3462-3467.
[130]Song, H., Chen, D. L., and Ismagilov, R. F. (2006). Reactions in Droplets in Microfluidic Channels. Angewandte Chemie International Edition, 45(44), 7336-7356.
[131]Priest, C., Herminghaus, S., and Seemann, R. (2006). Generation of monodisperse gel emulsions in a microfluidic device. Applied Physics Letters, 88(2), 024106.
[132]Yi, G. R., Thorsen, T., Manoharan, V. N., Hwang, M. J., Jeon, S. J., Pine, D. J., Quake, S. R., and Yang, S. M. (2003). Generation of Uniform Colloidal Assemblies in Soft Microfluidic Devices. Advanced Materials, 15(15), 1300-1304.
[133]Jeong, W. J., Kim, J. Y., Choo, J., Lee, E. K., Han, C. S., Beebe, D. J., Seong, G. H., and Lee, S. H. (2005). Continuous Fabrication of Biocatalyst Immobilized Microparticles Using Photopolymerization and Immiscible Liquids in Microfluidic Systems. Langmuir, 21(9), 3738-3741.
[134]Nisisako, T., Torii, T., and Higuchi, T. (2004). Novel microreactors for functional polymer beads. Chemical Engineering Journal, 101(1–3), 23-29.
[135]De Geest, B. G., Urbanski, J. P., Thorsen, T., Demeester, J., and De Smedt, S. C. (2005). Synthesis of Monodisperse Biodegradable Microgels in Microfluidic Devices. Langmuir, 21(23), 10275-10279.
[136]Yun, S., Peng, J., Dai-Wen, P., and Zhi-Ling, Z. (2015). Droplet-based microreactor for synthesis of water-soluble Ag 2 S quantum dots. Nanotechnology, 26(27), 275701.
[137]Riche, C. T., Roberts, E. J., Gupta, M., Brutchey, R. L., and Malmstadt, N. (2016). Flow invariant droplet formation for stable parallel microreactors. Nat Commun, 7.
[138]Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537-541.
[139]Vasiljevic, D., Parojcic, J., Primorac, M., and Vuleta, G. (2006). An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. International Journal of Pharmaceutics, 309(1–2), 171-177.
[140]Choi, C.-H., Jung, J.-H., Rhee, Y. W., Kim, D.-P., Shim, S.-E., and Lee, C.-S. (2007). Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomedical Microdevices, 9(6), 855-862.
[141]Skurtys, O., and Aguilera, J. M. (2008). Applications of Microfluidic Devices in Food Engineering. Food Biophysics, 3(1), 1-15.
[142]Gong, X., Wen, W., and Sheng, P. (2009). Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets. Langmuir, 25(12), 7072-7077.
[143]Fernández-Nieves, A., Vitelli, V., Utada, A. S., Link, D. R., Márquez, M., Nelson, D. R., and Weitz, D. A. (2007). Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 99(15), 157801.
[144]陳怡婷. (2015). 整合製備相轉移材料微膠囊之同心毛細管微流道系統開發研究. 碩士學位論文, 國立台灣大學, 台灣.
[145]Churski, K., Korczyk, P., and Garstecki, P. (2010). High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab on a Chip, 10(7), 816-818.
[146]Edwards, B. S., Oprea, T., Prossnitz, E. R., and Sklar, L. A. (2004). Flow cytometry for high-throughput, high-content screening. Current Opinion in Chemical Biology, 8(4), 392-398.
[147]Fabel, S., Niessner, R., and Weller, M. G. (2005). Effect-directed analysis by high-performance liquid chromatography with gas-segmented enzyme inhibition. Journal of Chromatography A, 1099(1–2), 103-110.
[148]Pei, J., Li, Q., Lee, M. S., Valaskovic, G. A., and Kennedy, R. T. (2009). Analysis of Samples Stored as Individual Plugs in a Capillary by Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 81(15), 6558-6561.
[149]Bartsch, J. W., Tran, H. D., Waller, A., Mammoli, A. A., Buranda, T., Sklar, L. A., and Edwards, B. S. (2004). An Investigation of Liquid Carryover and Sample Residual for a High-Throughput Flow Cytometer Sample Delivery System. Analytical Chemistry, 76(13), 3810-3817.
[150]Linder, V., Sia, S. K., and Whitesides, G. M. (2005). Reagent-Loaded Cartridges for Valveless and Automated Fluid Delivery in Microfluidic Devices. Analytical Chemistry, 77(1), 64-71.
[151]He, M., Edgar, J. S., Jeffries, G. D. M., Lorenz, R. M., Shelby, J. P., and Chiu, D. T. (2005). Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets. Analytical Chemistry, 77(6), 1539-1544.
[152]Garstecki, P., J. Fuerstman, M., Fischbach, M. A., Sia, S. K., and Whitesides, G. M. (2006). Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab on a Chip, 6(2), 207-212.
[153]Mao, X., Juluri, B. K., Lapsley, M. I., Stratton, Z. S., and Huang, T. J. (2009). Milliseconds microfluidic chaotic bubble mixer. Microfluidics and Nanofluidics, 8(1), 139-144.
[154]Ahmed, D., Mao, X., Shi, J., Juluri, B. K., and Huang, T. J. (2009). A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip, 9(18), 2738-2741.
[155]Prakash, M., and Gershenfeld, N. (2007). Microfluidic bubble logic. Science, 315(5813), 832-835.
[156]Fuerstman, M. J., Garstecki, P., and Whitesides, G. M. (2007). Coding/decoding and reversibility of droplet trains in microfluidic networks. Science, 315(5813), 828-832.
[157]Katsikis, G., Cybulski, J. S., and Prakash, M. (2015). Synchronous universal droplet logic and control. Nat Phys, 11(7), 588-596.
[158]Zagnoni, M., and Cooper, J. M. (2010). A microdroplet-based shift register. Lab on a Chip, 10(22), 3069-3073.
[159]Korczyk, P. M., Derzsi, L., Jakiela, S., and Garstecki, P. (2013). Microfluidic traps for hard-wired operations on droplets. Lab on a Chip, 13(20), 4096-4102.
[160]van Steijn, V., Korczyk, P. M., Derzsi, L., Abate, A. R., Weitz, D. A., and Garstecki, P. (2013). Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics, 7(2), 024108.
[161]Lee, M., Collins, J. W., Aubrecht, D. M., Sperling, R. A., Solomon, L., Ha, J.-W., Yi, G.-R., Weitz, D. A., and Manoharan, V. N. (2014). Synchronized reinjection and coalescence of droplets in microfluidics. Lab on a Chip, 14(3), 509-513.
[162]Schlicht, B., and Zagnoni, M. (2015). Droplet-interface-bilayer assays in microfluidic passive networks. Scientific Reports, 5, 9951.
[163]Baroud, C. N., Gallaire, F., and Dangla, R. (2010). Dynamics of microfluidic droplets. Lab on a Chip, 10(16), 2032-2045.
[164]Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R. (2001). Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters, 86(18), 4163-4166.
[165]DE MENECH, M., GARSTECKI, P., JOUSSE, F., and STONE, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595, 141-161.
[166]Zeng, W., Li, S. J., and Wang, Z. W. (2016). Linear model of a T-junction microdroplet generator for precise control of droplet size. Soft Matter, 12(18), 4274-4274.
[167]Garstecki, P., Fuerstman, M. J., Stone, H. A., and Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip, 6(3), 437-446.
[168]Christopher, G. F., Noharuddin, N. N., Taylor, J. A., and Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 78(3), 036317.
[169]Anna, S. L., Bontoux, N., and Stone, H. A. (2003). Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 82(3), 364-366.
[170]Nie, Z., Seo, M., Xu, S., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P., and Stone, H. A. (2008). Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 5(5), 585-594.
[171]Dollet, B., van Hoeve, W., Raven, J.-P., Marmottant, P., and Versluis, M. (2008). Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices. Physical Review Letters, 100(3), 034504.
[172]Cubaud, T., and Mason, T. G. (2008). Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 20(5), 053302.
[173]Cramer, C., Fischer, P., and Windhab, E. J. (2004). Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 59(15), 3045-3058.
[174]Cordero, M. L., Gallaire, F., and Baroud, C. N. (2011). Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets. Physics of Fluids, 23(9), 094111.
[175]Utada, A. S., Chu, L.-Y., Fernandez-Nieves, A., Link, D. R., Holtze, C., and Weitz, D. A. (2007). Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics. MRS Bulletin, 32(09), 702-708.
[176]Castro-Hernández, E., Gundabala, V., Fernández-Nieves, A., and Gordillo, J. M. (2009). Scaling the drop size in coflow experiments. New Journal of Physics, 11(7), 075021.
[177]Ward, T., Faivre, M., Abkarian, M., and Stone, H. A. (2005). Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. ELECTROPHORESIS, 26(19), 3716-3724.
[178]Korczyk, P. M., Cybulski, O., Makulska, S., and Garstecki, P. (2011). Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab on a Chip, 11(1), 173-175.
[179]Li, Z., Mak, S. Y., Sauret, A., and Shum, H. C. (2014). Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab on a Chip, 14(4), 744-749.
[180]Wang, L., Zhang, Y., and Cheng, L. (2009). Magic microfluidic T-junctions: Valving and bubbling. Chaos, Solitons & Fractals, 39(4), 1530-1537.
[181]Raven, J.-P., and Marmottant, P. (2006). Periodic Microfluidic Bubbling Oscillator: Insight into the Stability of Two-Phase Microflows. Physical Review Letters, 97(15), 154501.
[182]van Steijn, V., Kreutzer, M. T., and Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 62(24), 7505-7514.
[183]Wang, K., Lu, Y. C., Tan, J., Yang, B. D., and Luo, G. S. (2010). Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluidics and Nanofluidics, 8(6), 813-821.
[184]Murshed, S. M. S., Tan, S. H., Nguyen, N. T., Wong, T. N., and Yobas, L. (2009). Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluidics and Nanofluidics, 6(2), 253-259.
[185]Lin, Y. H., Lee, C. H., and Lee, G. B. (2008). Droplet formation utilizing controllable moving-wall structures for double-emulsion applications. Journal of Microelectromechanical Systems, 17(3), 573-581.
[186]Abate, A. R., Romanowsky, M. B., Agresti, J. J., and Weitz, D. A. (2009). Valve-based flow focusing for drop formation. Applied Physics Letters, 94(2), 023503.
[187]Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M., and Weitz, D. A. (2006). Electric Control of Droplets in Microfluidic Devices. Angewandte Chemie International Edition, 45(16), 2556-2560.
[188]Kim, H., Luo, D., Link, D., Weitz, D. A., Marquez, M., and Cheng, Z. (2007). Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Applied Physics Letters, 91(13), 133106.
[189]Tan, S. H., and Nguyen, N.-T. (2011). Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations. Physical Review E, 84(3), 036317.
[190]Bransky, A., Korin, N., Khoury, M., and Levenberg, S. (2009). A microfluidic droplet generator based on a piezoelectric actuator. Lab on a Chip, 9(4), 516-520.
[191]Jean-Christophe, G., Denis, B., and Vincent, S. (2009). Active connectors for microfluidic drops on demand. New Journal of Physics, 11(7), 075027.
[192]Churski, K., Nowacki, M., Korczyk, P. M., and Garstecki, P. (2013). Simple modular systems for generation of droplets on demand. Lab on a Chip, 13(18), 3689-3697.
[193]Park, S.-Y., Wu, T.-H., Chen, Y., Teitell, M. A., and Chiou, P.-Y. (2011). High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab on a Chip, 11(6), 1010-1012.
[194]Jakiela, S., Makulska, S., Korczyk, P. M., and Garstecki, P. (2011). Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab on a Chip, 11(21), 3603-3608.
[195]Link, D. R., Anna, S. L., Weitz, D. A., and Stone, H. A. (2004). Geometrically Mediated Breakup of Drops in Microfluidic Devices. Physical Review Letters, 92(5), 054503.
[196]Kreutz, J. E., Li, L., Roach, L. S., Hatakeyama, T., and Ismagilov, R. F. (2009). Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous−Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization. Journal of the American Chemical Society, 131(17), 6042-6043.
[197]Schmitz, C. H. J., Rowat, A. C., Koster, S., and Weitz, D. A. (2009). Dropspots: a picoliter array in a microfluidic device. Lab on a Chip, 9(1), 44-49.
[198]Shen, F., Du, W., Kreutz, J. E., Fok, A., and Ismagilov, R. F. (2010). Digital PCR on a SlipChip. Lab on a Chip, 10(20), 2666-2672.
[199]Bui, M.-P. N., Li, C. A., Han, K. N., Choo, J., Lee, E. K., and Seong, G. H. (2011). Enzyme Kinetic Measurements Using a Droplet-Based Microfluidic System with a Concentration Gradient. Analytical Chemistry, 83(5), 1603-1608.
[200]Trivedi, V., Doshi, A., Kurup, G. K., Ereifej, E., Vandevord, P. J., and Basu, A. S. (2010). A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening. Lab on a Chip, 10(18), 2433-2442.
[201]Neil, S. R. T., Rushworth, C. M., Vallance, C., and Mackenzie, S. R. (2011). Broadband cavity-enhanced absorption spectroscopy for real time, in situ spectral analysis of microfluidic droplets. Lab on a Chip, 11(23), 3953-3955.
[202]Churski, K., Kaminski, T. S., Jakiela, S., Kamysz, W., Baranska-Rybak, W., Weibel, D. B., and Garstecki, P. (2012). Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip, 12(9), 1629-1637.
[203]Yue, J., Falke, F. H., Schouten, J. C., and Nijhuis, T. A. (2013). Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow. Lab on a Chip, 13(24), 4855-4863.
[204]Niu, X., Zhang, M., Peng, S., Wen, W., and Sheng, P. (2007). Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics, 1(4), 044101.
[205]Elbuken, C., Glawdel, T., Chan, D., and Ren, C. L. (2011). Detection of microdroplet size and speed using capacitive sensors. Sensors and Actuators A: Physical, 171(2), 55-62.
[206]Liu, S., Gu, Y., Le Roux, R. B., Matthews, S. M., Bratton, D., Yunus, K., Fisher, A. C., and Huck, W. T. S. (2008). The electrochemical detection of droplets in microfluidic devices. Lab on a Chip, 8(11), 1937-1942.
[207]Gu, S., Lu, Y., Ding, Y., Li, L., Song, H., Wang, J., and Wu, Q. (2014). A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing. Biosensors and Bioelectronics, 55, 106-112.
[208]Hu, X., Lin, X., He, Q., and Chen, H. (2014). Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes. Journal of Electroanalytical Chemistry, 726, 7-14.
[209]Pekin, D., Skhiri, Y., Baret, J.-C., Le Corre, D., Mazutis, L., Ben Salem, C., Millot, F., El Harrak, A., Hutchison, J. B., Larson, J. W., Link, D. R., Laurent-Puig, P., Griffiths, A. D., and Taly, V. (2011). Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a Chip, 11(13), 2156-2166.
[210]Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D., and Heyman, J. A. (2013). Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protocols, 8(5), 870-891.
[211]Maillot, S., Carvalho, A., Vola, J.-P., Boudier, C., Mely, Y., Haacke, S., and Leonard, J. (2014). Out-of-equilibrium biomolecular interactions monitored by picosecond fluorescence in microfluidic droplets. Lab on a Chip, 14(10), 1767-1774.
[212]Vazquez, B., Qureshi, N., Oropeza-Ramos, L., and Olguin, L. F. (2014). Effect of velocity on microdroplet fluorescence quantified by laser-induced fluorescence. Lab on a Chip, 14(18), 3550-3555.
[213]Choi, J.-W., Kim, G.-J., Lee, S., Kim, J., deMello, A. J., and Chang, S.-I. (2015). A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosensors and Bioelectronics, 67, 497-502.
[214]Cecchini, M. P., Hong, J., Lim, C., Choo, J., Albrecht, T., deMello, A. J., and Edel, J. B. (2011). Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Analytical Chemistry, 83(8), 3076-3081.
[215]Luther, S. K., Will, S., and Braeuer, A. (2014). Phase-specific Raman spectroscopy for fast segmented microfluidic flows. Lab on a Chip, 14(16), 2910-2913.
[216]Wu, L., Wang, Z., Zong, S., and Cui, Y. (2014). Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. Biosensors and Bioelectronics, 62, 13-18.
[217]Hidi, I. J., Jahn, M., Weber, K., Cialla-May, D., and Popp, J. (2015). Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Physical Chemistry Chemical Physics, 17(33), 21236-21242.
[218]Meier, T. A., Beulig, R. J., Klinge, E., Fuss, M., Ohla, S., and Belder, D. (2015). On-chip monitoring of chemical syntheses in microdroplets via surface-enhanced Raman spectroscopy. Chemical Communications, 51(41), 8588-8591.
[219]Polynkin, P., Polynkin, A., Peyghambarian, N., and Mansuripur, M. (2005). Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters, 30(11), 1273-1275.
[220]Zhang, L., Wang, P., Xiao, Y., Yu, H., and Tong, L. (2011). Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab on a Chip, 11(21), 3720-3724.
[221]Li, K., Liu, G., Wu, Y., Hao, P., Zhou, W., and Zhang, Z. (2014). Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta, 120, 419-424.
[222]Li, Z. Y., Xu, Y. X., Fang, W., Tong, L. M., and Zhang, L. (2015). Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip. Sensors, 15(3), 4890-4898.
[223]Li, W., Young, E. W. K., Seo, M., Nie, Z., Garstecki, P., Simmons, C. A., and Kumacheva, E. (2008). Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 4(2), 258-262.
[224]Li, W., Greener, J., Voicu, D., and Kumacheva, E. (2009). Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab on a Chip, 9(18), 2715-2721.
[225]Nisisako, T., and Torii, T. (2008). Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab on a Chip, 8(2), 287-293.
[226]Conchouso, D., Castro, D., Khan, S. A., and Foulds, I. G. (2014). Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab on a Chip, 14(16), 3011-3020.
[227]Romanowsky, M. B., Abate, A. R., Rotem, A., Holtze, C., and Weitz, D. A. (2012). High throughput production of single core double emulsions in a parallelized microfluidic device. Lab on a Chip, 12(4), 802-807.
[228]Barbier, V., Willaime, H., Tabeling, P., and Jousse, F. (2006). Producing droplets in parallel microfluidic systems. Physical Review E, 74(4).
[229]Chokkalingam, V., Herminghaus, S., and Seemann, R. (2008). Self-synchronizing pairwise production of monodisperse droplets by microfluidic step emulsification. Applied Physics Letters, 93(25), 254101.
[230]Hong, J., Choi, M., Edel, J. B., and deMello, A. J. (2010). Passive self-synchronized two-droplet generation. Lab on a Chip, 10(20), 2702-2709.
[231]Hashimoto, M., Shevkoplyas, S. S., Zasońska, B., Szymborski, T., Garstecki, P., and Whitesides, G. M. (2008). Formation of Bubbles and Droplets in Parallel, Coupled Flow-Focusing Geometries. Small, 4(10), 1795-1805.
[232]Guzowski, J., Korczyk, P. M., Jakiela, S., and Garstecki, P. (2011). Automated high-throughput generation of droplets. Lab on a Chip, 11(21), 3593-3595.
[233]Ahn, B., Lee, K., Lee, H., Panchapakesan, R., and Oh, K. W. (2011). Parallel synchronization of two trains of droplets using a railroad-like channel network. Lab on a Chip, 11(23), 3956-3962.
[234]Xu, L., Lee, H., Panchapakesan, R., and Oh, K. W. (2012). Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab on a Chip, 12(20), 3936-3942.
[235]Lee, H., Xu, L., and Oh, K. W. (2014). Droplet-based microfluidic washing module for magnetic particle-based assays. Biomicrofluidics, 8(4), 044113.
[236]Dukler, A. E., Wicks, M., and Cleveland, R. G. (1964). Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE Journal, 10(1), 44-51.
[237]Beattie, D. R. H., and Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. International Journal of Multiphase Flow, 8(1), 83-87.
[238]Hoyt, L. F. (1934). New Table of the Refractive Index of Pure Glycerol at 20°C. Industrial & Engineering Chemistry, 26(3), 329-332.
[239]Koohyar, F., Rostami, A. A., Chaichi, M. J., and Kiani, F. (2013). Study on Thermodynamic Properties for Binary Systems of Water plus L-Cysteine Hydrochloride Monohydrate, Glycerol, and D-Sorbitol at Various Temperatures. Journal of Chemistry.
[240]方柏璇. (2011). 毛細-重力閥門及其在整合式尿液肌酸酐檢測晶片之研究與應用. 碩士學位論文, 國立台灣大學, 台灣.
[241]Wang, A.-B., Fang, P.-H., Chu Su, Y., Hsieh, Y.-W., Lin, C.-W., Chen, Y.-T., and Hsu, Y.-C. (2016). A novel lab-on-a-chip design by sequential capillary–gravitational valves for urinary creatinine detection. Sensors and Actuators B: Chemical, 222, 721-727.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊