(3.235.41.241) 您好!臺灣時間:2021/04/11 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐穎彥
研究生(外文):Ying-Yan Hsu
論文名稱:敲擊回音相位之參數分析
論文名稱(外文):Parametric Study on Impact-Echo Phase
指導教授:劉佩玲劉佩玲引用關係
指導教授(外文):Pei-Ling Liu
口試委員:郭茂坤林宜清
口試委員(外文):Mao-Kuen KuoYi-Ching Lin
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:133
中文關鍵詞:敲擊回音法非破壞檢測相位裂縫鋼筋混凝土
外文關鍵詞:Impact echo methodNondestructive testPhaseCrackReinforcing Bars
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
敲擊回音法為非破壞檢測技術中,最廣為應用於混凝土結構之檢測。傳統敲擊回音法為藉由結構表面受敲擊後產生表面位移,再經由傅立葉轉換得到振幅頻譜,並以振幅頻譜判讀結構內之結構尺寸或缺陷位置。然而,傳統敲擊回音分析僅能偵測混凝土內部反射面可能位置,卻無法得知反射面係由裂縫或鋼筋形成,鋼筋屬補強構件,但裂縫卻會危害混凝土結構完整性,因此,反射面類型的判別相當重要。
本研究之主旨為探討敲擊回音相位法用於辨識裂縫與鋼筋之可行性,此想法是由於反射波相位會改變而來。當應力波所遇到反射面為鋼筋時,回波相位會改變π ;而當應力波所遇到反射面為裂縫時,其回波相位沒有變化。因此,推測由裂縫或鋼筋所造成之回波相位會不相等。
首先,將理想化表面位移函數藉由傅立葉轉換得到回波相位之解析解,即可發現裂縫之回波相位趨近於0,而鋼筋之回波相位會趨近於π/2。而本研究經由數值模擬與模型試驗驗證後,得知裂縫或鋼筋之回波相位值會分別落在(-π,π/4)與(π/4, π)間。此外,上述結果亦發現裂縫之回波相位會靠近0,而鋼筋之回波相位會靠近π/2。
本研究亦探討敲擊源、反射面深度與內含物尺寸三種參數對回波相位之影響,期使量測結果能更易於定量分析與討論,以提供非破壞檢測人員檢測時之建議。由敲擊源之影響來看,數值模擬結果顯示當回波頻率與敲擊源頻率中心之比值超過2時,相位結果會變差,故建議選擇之鋼珠為使比值小於2之範圍,尤其當敲擊源頻率中心與回波頻率接近時,相位值會較準確;由反射面深度之影響來討論,當深度改變時,若鋼珠直徑愈大,會使得相位結果導致誤判,故建議須慎選鋼珠直徑以作為敲擊源;而由內含物尺寸之影響來分析,若裂縫邊長與裂縫深度之比值大於0.2,裂縫回波相位會愈靠近0;而若鋼筋半徑與鋼筋深度之比值大於0.4,則鋼筋回波相位會靠近π/2 。因此,推測裂縫愈大或鋼筋愈粗,能使得回波相位結果愈佳。
根據上述結果,本研究建議於敲擊回音試驗時,檢測人員須選擇合適之鋼珠作為敲擊源。待將試驗之位移訊號進行傅立葉轉換後,應同時建立振幅頻譜與相位頻譜,並由振幅頻譜定出回波頻率,由相位頻譜找出對應之回波相位,再以π/4 作為相位值之分界線,以判斷反射面為裂縫或鋼筋。最後,將回波頻率帶入正確之敲擊回音公式,以得到正確的深度。


The impact-echo test can be adopted to detect the defects or inclusions in concrete structures. The conventional impact-echo analysis applies the Fourier transform to the surface response of the target structure due to an impact of a steel ball. Then, the magnitude spectrum is used to determine the frequency of the echo signals. Although the magnitude spectrum may disclose the existence of an interface in the structure, it cannot tell whether the interface comes from a crack or a rebar. Such information is crucial in the safety assessment of the structure. It is also necessary in the determination of interface depth because the impact-echo equations for crack and rebar differ.
This research examines the feasibility of the impact-echo phase analysis in the recognition of rebars and cracks. The idea is based on the phase change of the reflected wave. As a wave encounters a hard interface, it reflects with a phase change of π, but as it encounters a soft interface, there is no phase change. Hence, the phases of the echo signals from a crack and a rebar should disagree.
Firstly, Fourier transform was applied to the idealized signals. It is found that the phases of crack echoes are indeed close to 0, while the phases of rebar echoes are close toπ/2 . Then, numerical and model tests were conducted to verify the results. The influence of the impact source, depth of interface, and the size of inclusion on the impact-echo phase are also studied. It is found that the phase offsets of crack and rebar echoes mostly fall within two separated ranges, ( -π,π/4) and ( π/4 ,π), respectively.
By the parametric study, it is found that the impact-echo phase method works under the following conditions. Firstly, when the echo frequency equals to central frequency of the impact source, one would get satisfactory results. However, if the echo frequency exceeds twice central frequency of the impact source, the phase offsets would get worse results. Secondly, as the length-depth ratio of the crack exceeds 0.2 or the radius-depth ratio exceeds 0.4, one would get worse phase offsets.
Hence, it is suggested that the impact-echo test be conducted using proper impact ball. Construct both the magnitude and phase spectra in the Fourier analysis. Use the magnitude spectrum to determine the echo frequency and use the phase spectrum to determine the echo phase. Then, useπ/4 as the decision line to judge the type of inclusion. As such, one can get both the type and depth of the inclusion correctly.


致謝 2
摘要 3
Abstract 4
目錄 6
圖目錄 8
表目錄 12
第一章 前言 14
1.1研究動機 14
1.2文獻回顧 15
1.3全文簡介 16
第二章 敲擊回音法之原理 18
2.1應力波傳遞行為 18
2.2敲擊回音法 19
2.3敲擊回音法之試驗參數 21
2.3.1敲擊源 22
2.3.2總取樣時間 23
2.3.3取樣時距 24
2.4混凝土中裂縫與鋼筋辨識之困難 25
第三章 敲擊回音相位法 32
3.1敲擊回音訊號之相位頻譜 32
3.2一維波傳之相位解析解 33
3.2.1 試體內反射面為裂縫 33
3.2.2 試體內反射面為鋼筋 35
3.3敲擊回音法之檢測流程 37
3.4訊號處理之特別注意事項 38
第四章 數值參數分析 43
4.1有限元素法模擬軟體之介紹 43
4.2有限元素法之分析步驟 44
4.3數值模型與模擬參數 48
4.4數值模擬結果 50
4.4.1敲擊回音相位法之驗證 50
4.4.2裂縫與鋼筋之相位斜率比較 51
4.4.3敲擊源之影響 52
4.4.4反射面深度之影響 60
4.4.5內含物尺寸之影響 64
第五章 模型試驗 100
5.1模型試體 100
5.2實驗配置 101
5.2.1實驗設備 101
5.2.2測點佈設 102
5.2.3實驗參數 102
5.3實驗結果 102
5.3.1 模型試驗一: 深度12 cm水平裂縫 102
5.3.2 模型試驗二: 深度6~14 cm傾斜裂縫 104
5.3.3 模型試驗三: 深度25 cm水平裂縫 105
5.3.4 模型試驗四: 深度6 cm鋼筋 106
5.4討論 107
第六章 結論與未來展望 122
參考文獻 124
附錄 126
附錄一:一維波傳之相位與相位斜率推導−裂縫 126
附錄二:一維波傳之相位與相位斜率推導−鋼筋 130



[1]M. Sansalone and N. J. Carino, Impact-Echo:A Method for Flaw Detection in Concrete Using Transient Stress Waves. Gaithersburg, MD:National Bureau of Standard 1986.
[2]Y. Lin, Sansalone M. & Carino N. J., "Finite Element Studies of the Transient Response of Plates Containing Thin Layers and Voids," J. Nondestructive Evaluation, vol. 9, pp. 27-47, 1990.
[3]Y. Lin, M. Sansalone, and N. J. Carino, "Finite Element Studies of the Transient Response of Plates Containing Flaws," Int’l Adv. In Nondestructive Testing, pp. 313-336, 1990.
[4]Y. Lin and M. Sansalone, "Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method," Materials J. the American Concrete Institute, 1991.
[5]Y. Lin and M. Sansalone, "Transient Response of Thick and Square Bars Subjected to Transverse Elastic Impact," J. Acoustical Society of America, vol. 91, pp. 885-893, 1992.
[6]Y. Lin and M. Sansalone, "Transient Response of Thick Rectangular Bars Subjected to Transverse Elastic Impact," J. Acoustical Society of America, vol. 91, pp. 2674-2685, 1992.
[7]Y. Lin and M. Sansalone, "Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact," J. Acoustical Society of America, vol. 91, pp. 885-893, 1992.
[8]C. Cheng and M. Sansalone, "The Impact-Echo Response of Concrete Plates Containing Delaminations: Numerical, Experimental and Field Studies," Material and Structures, vol. 26, pp. 274-285, 1993.
[9]C. Cheng and M. Sansalone, "Effects on Impact-Echo Signals Caused by Steel Reinforcing Bars and Voids around Bars," ACI Materials Journal, vol. 90, pp. 421-434, 1993.
[10]M.-T. Liang and P.-J. Su, "Detection of the Corrosion Damage of Rebar in Concrete Using Impact-Echo Method," Cement and Concrete Research, vol. 31, p. 1427~1436, 2001.
[11]P. L. Liu and C. Y. Yiu, "Imaging Of Concrete Defects Using Elastic Wave Tests," presented at the the 2002 Far-East Conference on Nondestructive Testing, Tokyo, Japan, 2002.
[12]C. Colla and R. Lausch, "Influence of Source Frequency on Impact-Echo Data Quality for Testing Concrete Structure," NDT and E International, vol. 36, pp. 203-213, 2003.
[13]C. H. Chiang and C. C. Cheng, "Detecting Rebars and Tubes Inside Concrete Slabs Using Continuous Wavelet Transform of Elastic Waves," J. of Mechanics, vol. 20, p. 297~302, 2004.
[14]P. L. Yeh, "The Time-frequency Domain Analysis and Image Method of The Impact Echo Method," Ph.D., Institute of Applied Mechanics, National Taiwan University, Taipei, 2006.
[15]林佳慶, "經驗模態分解法於敲擊回音法之應用," 國立國立臺灣大學應用力學研究所, 2007.
[16]許嘉文, "敲擊回音法於傾斜裂縫影像修正之探討," 國立國立臺灣大學應用力學研究所, 2012.
[17]Y. Xiang and S. K. Tso, "Detection and classification of flaws in concrete structure using bispectra and neural networks," NDT & E International, vol. 35, pp. 19-27, 2002.
[18]郭建成, "經驗模態分解應用於敲擊回音法之鋼筋與裂縫辨識," 國立國立臺灣大學應用力學研究所, 2007.
[19]柯智雄, "雙譜應用於敲擊回音法之裂縫與鋼筋訊號之辨識," 國立國立臺灣大學應用力學研究所, 2012.
[20]F. Leonard, "Phase spectrogram and frequency spectrogram as new diagnostic tools," Mechanical Systems and Signal Processing, vol. 21, pp. 125-137, 2007.
[21]林力權, "敲擊回音相位於鋼筋與裂縫檢測之應用," 國立國立臺灣大學應用力學研究所, 2014.
[22]葉承瑜, "鋼筋與裂縫敲擊回音訊號之辨識," 國立國立臺灣大學應用力學研究所, 2015.
[23]P.-L. Liu, P.-L. Yeh, L.-C. Lin, Y.-Y. Hsu, and C.-Y. Yeh, "Recognition of Rebar and Crack Based on Impact-Echo Phase Analysis," presented at the 8th European Workshop On Structural Health Monitoring Bilbao, Spain, 2016.
[24]W. Goldsmith, Impact:The Theory and Physical Behavior of Colliding Solids. London: Edward Arnold Ltd., 1965.
[25]J. O. Hallquist, LS-DYNA Keyword User''s Manual. Californa: Livermore Software Technology Corporation, 2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔