(3.227.208.0) 您好!臺灣時間:2021/04/21 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉冠廷
研究生(外文):Guan-Ting Liou
論文名稱:GPS/BDS雙星單頻精密單點定位之多時刻演算法
論文名稱(外文):A multi-epoch algorithm for GPS/BDS single frequency precise point positioning
指導教授:王立昇王和盛
指導教授(外文):Li-Sheng WangHe-Sheng Wang
口試委員:張帆人卓大靖
口試委員(外文):Fan-Ren ChangDah-Jing Jwo
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:GPS/BDS精密單點定位Helmert方差分量估計多時刻演算法
外文關鍵詞:GPS/BDSprecise point positioningHelmert variance component estimationmulti-epoch algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著物聯網(Internet of Things, IoT)的快速佈局與蓬勃發展,未來IoT的各式應用中,將對衛星定位產生更高的依賴度,因此僅使用單系統並無法提供更佳的導航服務,本研究整合全球定位系統(Global Positioning System, GPS)與北斗衛星導航系統(Beidou Satellite Navigation System, BDS)進行單頻精密單點定位,並希望達到即時定位之目的。
為了完善地整合GPS與BDS,本研究使用Helmert方差分量估計調整兩系統的系統權重以求達到最佳估測。觀測量誤差部分,使用IGS提供的Ultra-Rapid精密星曆修正GPS的衛星軌道誤差與衛星鐘差,使用IGS提供的廣播星曆修正BDS的衛星軌道誤差與衛星鐘差,使用IGS提供的全球電離層地圖修正電離層延遲誤差,對流層延遲誤差則是使用UNB3m模型進行修正。
定位演算法部分,本研究提出適應性多時刻演算法的概念,並進行了定位精度提升效率與程式計算時間的分析,其實驗結果與單時刻演算法進行比較後發現,在合理的時間成本增加下,適應性多時刻演算法確實能夠大幅地提升靜態單點定位精度。

With the rapid and vigorous development of Internet of Things (IoT), many kinds of IoT applications will more highly depend on satellite positioning system in the future. Merely single system cannot provide better navigation service, so we integrate Global Positioning System (GPS) with Beidou Satellite Navigation System (BDS) for single frequency precise point positioning, and hope to achieve the purpose of real-time positioning.
To integrate GPS with BDS well, we use Helmert variance component estimation to adjust the weighting of GPS and BDS. About the elimination of measurement errors, we use the Ultra-Rapid ephemeris provided by International GNSS Service (IGS) for correcting satellite orbit errors and satellite clock errors of GPS. IGS also provide broadcast ephemeris for BDS and was used here for correcting satellite orbit errors and satellite clock errors. The Global Ionospheric Map provided by IGS was adopted for correcting ionospheric delay errors. Moreover, UNB3m model was chosen for correcting tropospheric delay errors.
On the positioning algorithm, the concept of adaptive multi-epoch algorithm was proposed. The positioning accuracy and the operation time were investigated. Comparing with the single-epoch algorithm, the experimental results show that adaptive multi-epoch algorithm can substantially enhance the precision of static positioning with reasonable cost of the operation time.

誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究方法簡介與成果 2
第二章 全球導航衛星系統 3
2.1 全球定位系統 3
2.2 北斗衛星導航系統 6
2.3 GNSS觀測量 7
2.3.1 虛擬距離觀測量 7
2.3.2 載波相位觀測量 9
第三章 觀測量誤差來源 11
3.1 衛星相關誤差 11
3.1.1 衛星軌道誤差 11
3.1.2 衛星鐘差 12
3.1.3 衛星天線相位中心修正 13
3.1.4 相對論影響 15
3.2 訊號傳遞誤差 16
3.2.1 電離層延遲誤差 16
3.2.2 對流層延遲誤差 21
3.2.3 地球自轉修正 28
3.2.4 多路徑效應 29
3.3 接收機相關誤差 30
3.3.1 接收機鐘差 30
3.3.2 其餘微小誤差 30
3.4 GNSS雙星整合誤差 31
第四章 即時單頻精密單點定位演算法設計 33
4.1 精密單點定位原理 33
4.2 單星系定位模型 34
4.3 雙星系定位模型 37
4.4 加權最小平方法 38
4.5 Helmert方差分量估計 39
4.6 多時刻演算法 41
4.7 定位流程 44
第五章 實驗結果 46
5.1 單時刻與逐秒累積多時刻演算法的定位結果與分析 48
5.2 固定多時刻演算法的定位結果與分析 52
5.3 適應性多時刻演算法的定位結果與分析 55
5.4 單時刻與多時刻演算法的定位結果比較 58
第六章 結論與未來工作 60
參考文獻 61

[1]J. R. Musial. (June 1, 2016). GNSS IN IOT APPLICATIONS. Available: http://japan.gnss.asia/sites/default/files/up_img/3.GSA_.pdf
[2]THURAYA. Can the Internet of Things (IoT) Survive without Satellite? Available: http://www.thuraya.com/content/can-internet-things-iot-survive-without-satellite
[3]J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb, "Precise point positioning for the efficient and robust analysis of GPS data from large networks," Journal of Geophysical Research: Solid Earth, vol. 102, pp. 5005-5017, 1997.
[4]Y. Gao, Y. Zhang, and K. Chen, "Development of a real-time single-frequency precise point positioning system and test results," in Proceedings of ION GNSS, 2006, pp. 26-29.
[5]T. Beran, Single-frequency, single-receiver terrestrial and spaceborne point positioning: University of New Brunswick, Department of Geodesy and Geomatics Engineering, 2008.
[6]W. Yu, W. Dai, X. Ding, W. Yang, and X. Gao, "Stochastic model of GPS/BD combined standard single point positioning," in China Satellite Navigation Conference (CSNC) 2012 Proceedings, 2012, pp. 325-334.
[7]M. Weixiao, L. Enxiao, H. Shuai, and Y. Qiyue, "Research and development on satellite positioning and navigation in China," IEICE transactions on communications, vol. 95, pp. 3385-3392, 2012.
[8]C. Cai, L. Pan, and Y. Gao, "A precise weighting approach with application to combined L1/B1 GPS/BeiDou positioning," Journal of Navigation, vol. 67, pp. 911-925, 2014.
[9]楊開元, "GPS/BDS 衛星導航之方法與效能," 成功大學測量及空間資訊學系學位論文, pp. 1-130, 2014.
[10]宋家瑋, "整合 GPS/BDS 雙星系統之單頻精密單點定位研究," 國立臺灣大學應用力學研究所學位論文, pp. 1-64, 2015.
[11]O. Sterle, B. Stopar, and P. P. Prešeren, "Single-frequency precise point positioning: an analytical approach," Journal of Geodesy, vol. 89, pp. 793-810, 2015.
[12]ICAO(2012), "Global Navigation Satellite System (GNSS) Manual (Doc 9849)," ed: International Civil Aviation Organization.
[13]H. Z. Abidin, Computational and geometrical aspects of on-the-fly ambiguity resolution: University of New Brunswick (Canada), 1992.
[14]N. Beck, Guide to GPS positioning: Larry d Hothem, 1986.
[15]H.-W. Bernhard, L. Herbert, and W. Elmar, "GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more," ed: Springer-Verlag Wien: NewYork, NY, USA, 2008.
[16]NGA, "Its Definition and Relationships with Local Geodetic Systems," Version 1.0.0 ed, 2014.
[17]M. Li, L. Qu, Q. Zhao, J. Guo, X. Su, and X. Li, "Precise point positioning with the BeiDou navigation satellite system," Sensors, vol. 14, pp. 927-943, 2014.
[18]C. Deng, W. Tang, J. Liu, and C. Shi, "Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system," GPS solutions, vol. 18, pp. 375-386, 2014.
[19]K. Chen, Real-time precise point positioning, timing and atmospheric sensing, 2005.
[20]D. Wells, "Guide to GPS Positioning, Can," GPS Assoc., Fredericton, NB, Canada, 1986.
[21]J. Kouba, "A guide to using International GNSS Service (IGS) products," ed, 2009.
[22]E. Kaplan and C. Hegarty, Understanding GPS: principles and applications: Artech house, 2005.
[23]R. Leandro, M. Santos, and R. B. Langley, "UNB neutral atmosphere models: development and performance," in Proceedings of ION NTM, 2006, pp. 564-73.
[24]A. Niell, "Global mapping functions for the atmosphere delay at radio wavelengths," Journal of Geophysical Research: Solid Earth, vol. 101, pp. 3227-3246, 1996.
[25]R. Wienia, "Use of global ionospheric maps for precise point positioning: Developing an optimised procedure in using Global Ionospheric Maps for single-frequency standalone positioning with GPS," TU Delft, Delft University of Technology, 2008.
[26]N. Ya’acob, M. Abdullah, and M. Ismail, "Determination of GPS total electron content using single layer model (SLM) ionospheric mapping function," IJCSNS, vol. 8, p. 154, 2008.
[27]S. M. Shrestha, Investigations into the estimation of tropospheric delay and wet refractivity using GPS measurements: Citeseer, 2003.
[28]J. A. Klobuchar, "Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-23, pp. 325-331, 1987.
[29]S. Schaer, W. Gurtner, and J. Feltens, "IONEX: The ionosphere map exchange format version 1," 1998.
[30]H. Hopfield, "Two‐quartic tropospheric refractivity profile for correcting satellite data," Journal of Geophysical research, vol. 74, pp. 4487-4499, 1969.
[31]J. Saastamoinen, "Atmospheric correction for the troposphere and stratosphere in radio ranging satellites," The use of artificial satellites for geodesy, pp. 247-251, 1972.
[32]J. P. Collins and R. B. Langley, A tropospheric delay model for the user of the wide area augmentation system.
[33]R. Leandro, M. Santos, and R. B. Langley, "UNB neutral atmosphere models: development and performance."
[34]G. Petit and B. Luzum, "IERS conventions (2010)," DTIC Document2010.
[35]Y. Yang, J. Li, J. Xu, J. Tang, H. Guo, and H. He, "Contribution of the compass satellite navigation system to global PNT users," Chinese Science Bulletin, vol. 56, pp. 2813-2819, 2011.
[36]Y. Ran, X. Hu, Y. Liu, T. Ke, and Z. Tang, "Compatibility analysis of Compass navigation signals," Sin China Phys Mech Astron, vol. 40, pp. 676-684, 2010.
[37]P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition: Lincoln, MA: Ganga-Jamuna Press, 2006.
[38]L. Jizhong and W. Muqing, "The Improvement of Positioning Accuracy with Weighted Least Square Based on SNR," in Wireless Communications, Networking and Mobile Computing, 2009. WiCom ''09. 5th International Conference on, 2009, pp. 1-4.
[39]A. Amiri-Simkooei, Least-squares variance component estimation: theory and GPS applications: TU Delft, Delft University of Technology, 2007.
[40]B. Li, Y. Shen, and L. Lou, "Efficient estimation of variance and covariance components: a case study for GPS stochastic model evaluation," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 203-210, 2011.
[41]D. Odijk, P. J. Teunissen, and B. Zhang, "Single-frequency integer ambiguity resolution enabled GPS precise point positioning," Journal of surveying engineering, vol. 138, pp. 193-202, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔