跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳均嘉
研究生(外文):Chun-Chia Chen
論文名稱:以暫態熱線法量測奈米流體的熱傳導係數
論文名稱(外文):Measurement of the thermal conductivity of nanofluids via transient hot wire method
指導教授:李雨李雨引用關係
指導教授(外文):U Lei
口試委員:田華忠陳希立
口試委員(外文):Hwa-Chong TienSih-Li Chen
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:熱傳導係數暫態熱線法奈米流體均值濾波DAQ介面卡
外文關鍵詞:Thermal conductivityTransient hot wire methodNanofluidsmean filterDAQ acquisition card.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米流體是液體中穩定懸浮有奈米粒子(粒徑 1 - 100 nm)的懸浮液。前人研究指出奈米流體的熱傳導係數會因奈米粒子的加入而明顯高於原液體(稱基底流體)者,而文獻中最當採用量測奈米流體熱傳導係數的方法為暫態熱線法。本文主要的目的即為自行建立一套暫態熱線量測設備、並予以驗證,及探討不同狀况下的奈米流體的熱傳增益。
經與文獻中多項實驗結果的比較,本研究所發展的暫態熱線量測設備應能合理量測出奈米流體的熱傳導係數。再者,就裝置架設及量測過程方面,除文獻中所述外,本研究並獲致一些如下實作心得。實驗中的惠斯通電橋可使用低電阻進行平衡配置,可解決輸出阻抗過高而導致的雜訊問題;而使用細長的白金線可提高熱線電阻,對於輸入電壓的校正有莫大幫助;本實驗的訊號截取和雜訊處理也必須謹慎,使用DAQ介面卡時要維持原訊號不失真的情況下擷取數值,最好的方法是對原始訊號均值處理後再儲存。
就奈米流體熱傳導係數的研究上,本文針對不同奈米粒子及基底流體,於不同體積分率下進行熱傳導係數的量測、並與文獻相比較後,得到以下結論。無論基底溶液、奈米粒子為何,隨着體積分率增加,熱傳導係數上升;將二氧化鈦奈米粒子加入乙二醇中配置的奈米流體,其熱傳增益會小於二氧化鈦與離子水所配置的奈米流體者。另因設備為自製者,便於進行改裝以各項相關研究,據此本文亦在裝置試體的容器外加裝可通電線圈,以探究磁場效應對奈米流體熱傳導係數的影響,以Fe3O4-Engine Oil奈米流體進行的初步實驗顯示磁場效應確有助提升熱傳導係數。


Nanofluid is a liquid suspended stably with nanoparticles, whose sizes are from 1 – 100 nm. It was found in the literature that the thermal conductivity of nanofluid is substantially greater than that of the original liquid (called the base fluid), because of the introduction of nanoparticles. A common technique for accessing the thermal conductivity of nanofluid is the transient hot wire method. The goal of this thesis is to build up a transient hot wire device, and apply it to study the thermal conductivity gain of nanofluids under different situations.
The transient hot wire device developed in this study was validated by comparing its measurements with several existing experimental data for wide ranges of experimental parameters。Furthermore, we found the followings which could be helpful for performing the experiments other than those stated in the literature. Low resistance resistors can be applied for the circuit of the Wheatstone bridge for avoiding the noise associated with high impedance output, long and thin platinum wire is helpful for calibrating the input voltage, and DAQ interface card for data acquisition can help to maintain the original signal undistorted. It is better to take the average of several data scanned before storage.
For the thermal conductivity of nanofluids, we have performed measurements for different nanoparticles (TiO2, Al3O2, Fe3O4), base fluids (de-ionized water, ethylene glycol (EG), engine oil), and volume fractions for validation of the device. Based on the present measurements as well as the findings in the literature, we conclude: (1) the thermal conductivity of nanofluids increase with the volume fraction, irrespective of different nanoparticles and base fluids. The TiO2-water nanofluids perform better than TiO2-EG nanofluids, regarding the enhancement of thermal conductivity associated with the application of nanofluids. As the device is assembled in our laboratory, vary modification of the device can be easily implemented for different research. Electric wires were coiled around the test tube of the present-developed device, for accessing the magnetic effect on thermal conductivity of nanofluids. Preliminary experiments were performed using Fe3O4-Engine Oil nanofluids, and it was found that the thermal conductivity can indeed be increased via an applied magnetic field by passing electric current through the coil.


致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究目的與背景 2
1-2 文獻回顧 3
1-2-1 固液混合物的等效熱傳導係數 3
1-2-2 布朗運動(Brownian motion) 8
1-2-3 電雙層(Electric Double Layer) 9
1-2-4 奈米粒子的聚結問題 11
1-3 本文架構 12
第二章 實驗理論 13
2-1 熱傳導係數量測原理 13
2-2 包覆絕緣層熱線之數學模型 18
2-3 pH計原理 21
第三章 實驗方法與設備架設 24
3-1 奈米流體的配置 24
3-2 暫態熱線法設備 27
3-2-1 熱線材料選擇 27
3-2-2 熱線之絕緣層塗佈 28
3-2-3 實驗容器製作 29
3-2-4 實驗架構設計 31
3-2-5 Vg數值截取 32
3-2-6 Labview數據處理 34
3-3 實驗架構參數 36
3-3-1 白金線的溫度係數β 36
3-3-2 輸入電壓的影響 36
3-3-3 實驗進行時間和白金線電阻 40
3-3-4 R1與R2的電阻 42
3-4 實驗步驟與校正 46
第四章 實驗結果與討論 48
4-1 改變基底流體量測熱傳導係數 48
4-1-1 水為基底流體下改變粒徑及濃度的熱傳增益 48
4-1-2 乙二醇為基底流體下改變粒徑及濃度的熱傳增益 50
4-1-3 甘油為基底流體下金屬氧化物隨濃度的熱傳增益 52
4-1-4 二氧化鈦奈米流體不同基底流體比較 54
4-2 磁場效應下熱傳導係數變化 55
4-3 與文獻結果比較 58
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 62
參考文獻 63




[1]Maxwell, J. C., “A treatise on electricity and magnetism,” Clarendon Press, Oxford 1873.

[2]Stephen U. S. Choi, “Enhanceing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED-231/MD-66: 99-105, 1995.

[3]D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen, Annalen der Physik, Leipzig 24, 636–679, 1935.

[4]R.L. Hamilton, O.K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” I&EC Fundam 1, 182–191, 1962.

[5]W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model,” Journal of Nanoparticle Research, 5(1-2), 167-171, 2003.

[6]W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model,” Journal of Nanoparticle Research, 6(4), 355-361, 2004.

[7]Q. Xue and W.-M. Xu, “A model of thermal conductivity of nanofluids with interfacial shells,” Materials Chemistry and Physics 90(2-3), 298-301, 2005.

[8]Y. Xuan, Q. Li and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AICHE Journal 49(4), 1038-1043, 2003.

[9]S.K. Das, N. Putta, P. Thiesen, W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME Trans. J. Heat Transfer 125, 567–574, 2003.

[10]B. B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman Press, San Francisco, 1982.

[11]B.-X. Wang, L.-P. Zhou and X.-F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” International Journal of Heat and Mass Transfer 46, 2665-2672, 2003.

[12]D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep and S. K. Das, “Model for heat conduction in nanofluids,” Physical Review Letters 93(14), 144301, 2004.

[13]P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” Journal of Applied Physics 95(11), 6492-6494, 2004.

[14]S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, 84, 4316-4318, 2004.

[15]S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge and R. G. Shimmin, “Thermal conductivity of nanoparticle suspensions,” Journal of Applied Physics 99(8), 084308, 2006.

[16]R. Prasher, P. Bhattacharya, P. E. Phelan, “Thermal conductivity of nanoscale colloidal solutions (nanofluids),” Physical Review Letters, 94(2), 025901, 2005.

[17]J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids.” Journal of Nanoparticle Research, 6(6), 577-588, 2004.

[18]J. Koo and C. Kleinstreuer, “Laminar nanofluid flow in micro-heat sinks,” International Journal of Heat and Mass Transfer 48(13), 2652-2661, 2005.

[19]C.-W. Nan, G. Liu, Y. Lin and M. Li, “Interface effect on thermal conductivity of carbon nanotube-based composites,” Applied Physics Letters 85, 3549-3551, 2004.

[20]L. Gao and X. F. Zhou, “Differential effective medium theory for thermal conductivity in nanofluids,” Physics Letters A, in press.

[21]Q. Z. Xue, “Model for thermal conductivity of carbon nanotube-based composites,” Physica B: Condensed Matter 386(1-4), 302-307, 2005.

[22]S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nano-tube suspensions,” Applied Physics Letters 79, 2252-2254, 2001.

[23]Q. Xue, “Model for the effective thermal conductivity of carbon nanotube composites,” Nanotechnology 17(6), 1655-1660, 2006.

[24]H. Xie, H. Lee, W. Youn and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” Journal of Applied Physics 94(8), 4967-4971, 2003.

[25]P. Keblinski, S. Phillpot, S. Choi and J. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat and Mass Transfer, 45, 855-863, 2002.

[26]Prasher, R., Song, D., Wang, J. and Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications,” Appl. Phys. Lett., 89, 133108, 2006.
[27]https://en.wikipedia.org/wiki/Zeta_potential

[28]J. Jiang, G. Oberdorster and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” J. Nanopart. Res. 11, 77–89, 2009.

[29]W. Wu, S. Liu, H. Hong and S. Chen, “Stability analysis of water-based nanofluids prepared by using supersomic dispersion method,” Advanced Materials Research(383-390), 6174-6180, 2012.

[30]S. M. S. Murshed, K. C. Leong and C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids,” Int. J. Thermal Sciences, 44, 367-373, 2005.

[31]http://www.ltp-oldenburg.de/index.php/thermal-conductivity.html

[32]Y. Nagasaka and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phy. E: Sci. Instrum., 14, 1435-1440, 1981.

[33]http://amebse.nchu.edu.tw/documents/instrument/pH%20principle.pdf

[34]http://webcache.googleusercontent.com/search?q=cache:vBaPA7HP8XgJ:www2.cma.edu.tw/u_edu/dep_physics/course/nano_phys/ppt/ch3_fabrication.pptx+&cd=1&hl=zh-TW&ct=clnk&gl=tw

[35]http://159.226.2.2:82/gate/big5/www.kepu.net.cn/gb/basic/nano/study/std05.html

[36]J. P. Bentley, “Temperature sensor characteristics and measurement system design,” J. Phys. E: Sci. Instrum., 17, 430-439, 1984.

[37]http://www.ledlh.cn/doc/info-38d906454431b90d6d85c71d.html

[38]謝秉倫, “二氧化鈦奈米流體熱傳導性質的實驗探討,” 國立台灣大學碩士論文,2014。

[39]黃榮斌, “以暫態熱面法量測奈米流體的熱傳導係數,” 國立台灣大學碩士論文,2015。

[40]W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Experimental Thermal and Fluid Science, 33, 706-714, 2009.

[41]G. Lee, C. K. Kim, M. K. Lee and C. K. Rhee, “Characterization of ethylene glycol based TiO2 nanofluid prepared by pulsed wire evaporation (PWE) method,” Rev. Adv. Mater. Sci. 28, 126-129, 2011.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊