[1]Maxwell, J. C., “A treatise on electricity and magnetism,” Clarendon Press, Oxford 1873.
[2]Stephen U. S. Choi, “Enhanceing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED-231/MD-66: 99-105, 1995.
[3]D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen, Annalen der Physik, Leipzig 24, 636–679, 1935.
[4]R.L. Hamilton, O.K. Crosser, “Thermal conductivity of heterogeneous twocomponent systems,” I&EC Fundam 1, 182–191, 1962.
[5]W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model,” Journal of Nanoparticle Research, 5(1-2), 167-171, 2003.
[6]W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model,” Journal of Nanoparticle Research, 6(4), 355-361, 2004.
[7]Q. Xue and W.-M. Xu, “A model of thermal conductivity of nanofluids with interfacial shells,” Materials Chemistry and Physics 90(2-3), 298-301, 2005.
[8]Y. Xuan, Q. Li and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AICHE Journal 49(4), 1038-1043, 2003.
[9]S.K. Das, N. Putta, P. Thiesen, W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME Trans. J. Heat Transfer 125, 567–574, 2003.
[10]B. B. Mandelbrot, “The Fractal Geometry of Nature,” W. H. Freeman Press, San Francisco, 1982.
[11]B.-X. Wang, L.-P. Zhou and X.-F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” International Journal of Heat and Mass Transfer 46, 2665-2672, 2003.
[12]D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep and S. K. Das, “Model for heat conduction in nanofluids,” Physical Review Letters 93(14), 144301, 2004.
[13]P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” Journal of Applied Physics 95(11), 6492-6494, 2004.
[14]S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Applied Physics Letters, 84, 4316-4318, 2004.
[15]S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge and R. G. Shimmin, “Thermal conductivity of nanoparticle suspensions,” Journal of Applied Physics 99(8), 084308, 2006.
[16]R. Prasher, P. Bhattacharya, P. E. Phelan, “Thermal conductivity of nanoscale colloidal solutions (nanofluids),” Physical Review Letters, 94(2), 025901, 2005.
[17]J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids.” Journal of Nanoparticle Research, 6(6), 577-588, 2004.
[18]J. Koo and C. Kleinstreuer, “Laminar nanofluid flow in micro-heat sinks,” International Journal of Heat and Mass Transfer 48(13), 2652-2661, 2005.
[19]C.-W. Nan, G. Liu, Y. Lin and M. Li, “Interface effect on thermal conductivity of carbon nanotube-based composites,” Applied Physics Letters 85, 3549-3551, 2004.
[20]L. Gao and X. F. Zhou, “Differential effective medium theory for thermal conductivity in nanofluids,” Physics Letters A, in press.
[21]Q. Z. Xue, “Model for thermal conductivity of carbon nanotube-based composites,” Physica B: Condensed Matter 386(1-4), 302-307, 2005.
[22]S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nano-tube suspensions,” Applied Physics Letters 79, 2252-2254, 2001.
[23]Q. Xue, “Model for the effective thermal conductivity of carbon nanotube composites,” Nanotechnology 17(6), 1655-1660, 2006.
[24]H. Xie, H. Lee, W. Youn and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” Journal of Applied Physics 94(8), 4967-4971, 2003.
[25]P. Keblinski, S. Phillpot, S. Choi and J. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat and Mass Transfer, 45, 855-863, 2002.
[26]Prasher, R., Song, D., Wang, J. and Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications,” Appl. Phys. Lett., 89, 133108, 2006.
[27]https://en.wikipedia.org/wiki/Zeta_potential
[28]J. Jiang, G. Oberdorster and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” J. Nanopart. Res. 11, 77–89, 2009.
[29]W. Wu, S. Liu, H. Hong and S. Chen, “Stability analysis of water-based nanofluids prepared by using supersomic dispersion method,” Advanced Materials Research(383-390), 6174-6180, 2012.
[30]S. M. S. Murshed, K. C. Leong and C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids,” Int. J. Thermal Sciences, 44, 367-373, 2005.
[31]http://www.ltp-oldenburg.de/index.php/thermal-conductivity.html
[32]Y. Nagasaka and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phy. E: Sci. Instrum., 14, 1435-1440, 1981.
[33]http://amebse.nchu.edu.tw/documents/instrument/pH%20principle.pdf
[34]http://webcache.googleusercontent.com/search?q=cache:vBaPA7HP8XgJ:www2.cma.edu.tw/u_edu/dep_physics/course/nano_phys/ppt/ch3_fabrication.pptx+&cd=1&hl=zh-TW&ct=clnk&gl=tw
[35]http://159.226.2.2:82/gate/big5/www.kepu.net.cn/gb/basic/nano/study/std05.html
[36]J. P. Bentley, “Temperature sensor characteristics and measurement system design,” J. Phys. E: Sci. Instrum., 17, 430-439, 1984.
[37]http://www.ledlh.cn/doc/info-38d906454431b90d6d85c71d.html
[38]謝秉倫, “二氧化鈦奈米流體熱傳導性質的實驗探討,” 國立台灣大學碩士論文,2014。[39]黃榮斌, “以暫態熱面法量測奈米流體的熱傳導係數,” 國立台灣大學碩士論文,2015。[40]W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Experimental Thermal and Fluid Science, 33, 706-714, 2009.
[41]G. Lee, C. K. Kim, M. K. Lee and C. K. Rhee, “Characterization of ethylene glycol based TiO2 nanofluid prepared by pulsed wire evaporation (PWE) method,” Rev. Adv. Mater. Sci. 28, 126-129, 2011.