跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鴻元
研究生(外文):Hung-Yuan Chen
論文名稱:輕骨材應用於平板固定化生物程序去除碳氮
論文名稱(外文):Use of Lightweight Aggregate in Plate Immobilized Biological Process for Removing Carbon and Nitrogen from Wastewater
指導教授:林正芳林正芳引用關係
指導教授(外文):Cheng-Fang Lin
口試委員:康佩群吳忠信胡慶祥
口試委員(外文):Andy P. K. HongChung-Hsin Wu
口試日期:2016-06-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:固定化生物技術硝化脫硝除氮輕質性骨材
外文關鍵詞:Immobilized microbial cellnitrificationdenitrificationnitrogen removalLightweight aggregates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固定化生物技術發展單槽式處理程序整合硝化與脫硝於單一槽體進行反應,具有高碳、氮去除效率、佔地面積小及污泥產量少等優勢,可提升或改善傳統生物脫氮程序之處理效率。目前使用的載體中主要分為天然載體及合成載體兩類,天然載體容易為生物所分解之缺點,而合成載體於製備時須使用大量化學溶劑,一來具有毒性,二來對於環境造成不良影響。
為符合永續發展之理念,本研究採用環境友善之固化材料及經高溫燒結之輕質性骨材進行固定生物包埋,其中添加輕質性骨材為提升載體透水率。載體型式以平板固定生物污泥板進行兩階段實驗,分別為載體材料基本特性及操作參數試驗,於基本特性又細分為平板製作條件試驗及溶出試驗,目的為建立初步製作方法及載體於水中之穩定性;操作參數試驗目的為以不同操作條件(水力停留時間及碳氮比)對於COD、硝化及總氮去除率之影響,討論改變固定化生物外型下是否影響其去除效率。
載體基本特性分析結果顯示其固定化平板污泥受外型影響,於壓力3000 kg/cm2與持壓30秒為較佳的製作條件。溶出試驗中,載體在第一天及浸泡24小時之後,其COD、導電度與pH皆呈現最高,其COD為250 mg/L;導電度為8.5 mS/cm;pH則為12.61,隨著浸泡天數增加COD、導電度及pH皆有逐漸減少溶出之效果。
操作參數顯示,碳氮比對於硝化及總氮去除率影響較大,碳氮比由C/N=4調整至C/N=12時,硝化效率由58%提升至63%,總氮去除率由41%提升至53%。而水力停留時間從HRT=6 hr提升至HRT=12 hr,COD去除率、硝化效率及總氮去除效率在三種水力停留時間差異不大。整體而言,若HRT=12、C/N=12,於連續曝氣模式下可獲得較佳的去除效率。


Immobilization of microbial cells technology combined traditional nitrification and denitrification in one single cell process which had many advantages are high organic carbon and nitrogen removal efficiency, small space occupation and less sludge produced. It also can be improved organic and nitrogen removal efficiency simultaneously from an aerobic activated sludge process. Nowadays, the matrix of immobilized microbial cell can be categorized into two groups: natural and synthetic. The most material for immobilized microbial cell are divides into two categories: Natural and Synthetic. The defect of natural material is easily decomposed by microorganism. Synthetic materials in the process of production applied complex chemicals are adverse impact on the environment.
For environment sustainable development, in this study used environmental friendly and lightweight aggregates for the production of microbial cell, and the lightweight aggregates are added to hydraulic conductivity. This research is consisted of two parts: analysis of the material characteristics and operation parameters test with a microbial cell plate. Production conditions test of prepared into flat sheet of plates and dissolution test for the purpose to realize the stability of the material. The operational aspect will focus on investigating nitrification, denitrification and total nitrogen removal efficiency under different operating conditions such as carbon vs nitrogen ratio (SCOD/N) and hydraulic retention time (HRT).
The microbial cell plate is formed in pressure 3000 kg/cm² and holding over 30 seconds. The dissolution test shown that the microbial cell plate elute COD over 250 mg/L, conductivity over 8.5 mS/cm and pH over 12.61 after the first day. However, the elute concentration of COD, conductivity and turbidity are found to be stable after five days of test, pH remained over 12 after 20 days of elution.
The SCOD/N mode shown that is an impact of the total nitrogen removal efficiency. Nitrification removal efficiency was increased from 58% to 63% and TN removal efficiency increased from 41% to 53% when SCOD/N was adjusted from 4 to 12. In conclusion, the optimum operating conditions is SCOD/N of 12, HRT of 12 hr., which resulted in 94% SCOD removal efficiency, 65% nitrification, and 60% TN removal efficiency.


致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究項目 2
第二章 文獻回顧 3
2.1 生物除氮機制 3
2.1.1 氮循環 3
2.1.2 硝化作用 5
2.1.3 脫硝作用 8
2.2 固定化生物技術 10
2.2.1 固定化生物技術原理 10
2.2.2 固定化生物技術種類 10
2.2.3 固定化生物技術之載體材料 11
2.2.4 固定化生物載體除氮機制 14
2.3 固化材料 15
2.3.1 固化材料簡介 15
2.3.2 固化材料水化作用 15
2.4 輕質性骨材 16
2.4.1 輕質性骨材種類 16
2.4.2 輕質性骨材特性 17
第三章 材料與方法 18
3.1 實驗內容 18
3.2 實驗設備與材料 19
3.2.1 固定化生物平板製作 19
3.2.2 溶出試驗 22
3.2.3 連續式反應槽建立 23
3.2.4 操作參數試驗 25
3.3 分析方法 27
3.3.1 水質分析 27
3.3.2 效能評估 29
第四章 結果與討論 30
4.1 固定化生物平板基本特性分析 30
4.1.1 壓製條件試驗 30
4.1.2 溶出試驗 33
4.2 操作參數實驗 37
4.2.1 不同水力停留時間 38
4.2.2 不同碳氮比 41
第五章 結論與建議 45
5.1 結論 45
5.2 建議 46
參考文獻 47
附錄 52


Alves, C.F., Melo, L. F., Vieira, M. J. (2002) Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidized bed reactor. Process Biochemistry, 37, 837-845.

Balmelle, B., Nguyen, K.M., Capdeville, B., Cornier, J.C. and Deguin, A. (1992) Study of Factors Controlling Nitrite Buildup in Biological Processes for Water Nitrification. Water Science and Technology 26(5-6), 1017-1025.

Borchardt, T. A. (1966) Nitrification in the activated sludge process in sewage treatment theory and application. Univ. of Michigan, Dept. of Civil Eng., Ann Arbor, Mich.

Brindle, K., Stephenson, T., Semmens, M. J. (1998) Nitrification and oxygen utilization in a membrane aeration bioreactor. J. Membrane Sci.144, 197-209.

Caffrey, J.M., Sloth, N.P., Kaspar, H.F. and Blackburn, T.H. (1993) Effect of Organic Loading on Nitrification and Denitrification in a Marine Sediment Microcosm. Fems Microbiology Ecology 12(3), 159-167.

Canfield, D.E., Glazer, A.N., and Falkowski, P.G. (2010) The Evolution and Future of Earth’s Nitrogen Cycle. Science 330: 192-196.

Castignetti, D. and Gunner, H.B. (1981) Nitrite and Nitrate Synthesis from Pyruvic-Oxime by an Alcaligenes Sp. Curr Microbiol 5(6), 379-384.

Chibata, I., Tosa, T. and Sato, T. (1986) Continuous Production of L-Aspartic Acid - Improvement of Productivity by Both Development of Immobilization Method and Construction of New Escherichia-Coli Strain. Applied Biochemistry and Biotechnology 13(3), 231-240.

Choi, E., Rhu, D., Yun, Z., Lee, E. (1998) Temperature effects on biological nutrient removal system with weak municipal wastewater. Wat. Sci. Tech., 37, 219-226.

Copper, G. S., Smith, R. L. (1983) Sequence of products formed during denitrification in some diverse western soils. Soil Sci Soc. Amer. Proc. 27, 659-664.
Dawson, R. N., Murphy, K. (1973) Factors affecting biological denitrification on wastewater. Was. Poll. Res., 11, Pergamon Press, Oxford.

Focht, D.L., and Chang, A. C. (1975)Nitrification and Denitrification Process Related to Wastewater Treatment.Adv. Appl. Microbiol., 20, 153.

Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., Watson, S. W. (1980) Production of NO and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526-532.

Gumaelius, L., Smith, E.H. and Dalhammar, G. (1996) Potential biomarker for denitrification of wastewaters: Effects of process variables and cadmium toxicity. Water Res 30(12), 3025-3031.

Hanaki, K., Chalermraj, W., Shinichiro, O. (1990a) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24, 297-302.

Hanaki, K., Chalermraj, W., Shinichiro, O. (1990b) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Research 24, 289-296.

Hanaki, K., Wantawin, C. and Ohgaki, S. (1990) Effects of the Activity of Heterotrophs on Nitrification in a Suspended-Growth Reactor. Water Res 24(3), 289-296.

Hitdlebaugh, J. A., Miller, R. D. (1981) Operational problems with rotating biological contactors. J. Wat. Poll. Contr. Fed. 53, 1283-1293.

Kokufuta, E., Yukishige, M. and Nakamura, I. (1987) Coimmobilization of Nitrosomonas europaea and Paracoccus denitrificans cells using polyelectrolyte complex-stabilized calcium alginate gel. Journal of Fermentation Technology 65(6), 659-664.

Kurt M., Dunn I. J. and Bourne J. R. (1987) Biological Denitrification of Drinking Water Using Autotrophic Organisms with H2 in a Fluidized-Bed Biofilm Reactor. Biotechnol. Bioeng., 29, 493-501.

L. John, Clarke. (1993) Blackie Academic & Professional: Structural Lightweight Aggregate Concrete.

Leenen, E.J.T.M., Dos Santos, V.A.P., Grolle, K.C.F., Tramper, J. and Wijffels, R. (1996) Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Research 30(12), 2985-2996.

Metcalf and Eddy, Inc. (1991) Wastewater Engineering:Treatment, Disposal, Reuse, 3rd Ed, Mc Graw-Hill, New York.

Okabe, S., Hiratia, K., Ozawa, Y., Watanabe, Y., (1996) Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnology and Bioengineering 50, 24-35.

Painter, H.A. (1970) A Review of Literature on Inorganic Nitrogen Metabolism in Microorganisms. Water Res 4(6), 393-450.

Painter, H.A. and Loveless, J.E. (1983) Effect of Temperature and Ph Value on the Growth-Rate Constants of Nitrifying Bacteria in the Activated-Sludge Process. Water Res 17(3), 237-248.

Pochana, K. and Keller, J. (1999) Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology 39(6), 61-68.

Poduska, R. A. (1974) Dynamics of Nitrification in the Activated Sludge Process. In Proceeding of the 29th Industrial Waste Conference Purdue University, West Lafayette, Ind. USA.

Randall, C.W. and Buth, D. (1984) Nitrite Buildup in Activated-Sludge Resulting from Temperature Effects. Journal Water Pollution Control Federation 56(9), 1039-1044.

Rittmann, B. E. and P. L. McCarty (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co., New York.

Rowan, A. K., Snape, J. R., Fearnside, D., Barer, M. R., Curtis, T. P., Head, I. M. (2003) Composition and Diversity of Ammonia‐Oxidising Bacterial Communities in Wastewater Treatment Reactors of Different Design Treating Identical Wastewater. FEMS Microbiology Ecology. 43(2), 195‐206.

Safont, B., Vitas, A.I. and Penas, F.J. (2012) Isolation and characterization of phenol degrading bacteria immobilized onto cyclodextrin-hydrogel particles within a draft tube spouted bed bioreactor. Biochemical Engineering Journal 64, 69-75.

Sawyer, C.N., (1973) Nitrification and Denitrification Facilities: Wastewater Treatment (EPA Technology Transfer Seminar Publication[3]).

Schmidt, I. and Bock, E. (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of Microbiology 167(2-3), 106-111.

Schoberl, R. F., Ahlert, R. C. (1975) Kinetic Response of Pertur Bed Marine Nitrification Systems. J. WPCF 47, pp 122-134.

Sedlak, R. (1991) Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice. 2nd Eds., Lewis Publishers, New York.

Sias, S.R., Stouthamer, A.H. and Ingraham, J.L. (1980) The Assimilatory and Dissimilatory Nitrate Reductases of Pseudomonas-Aeruginosa Are Encoded by Different Genes. Journal of General Microbiology 118(May), 229-234.

Sliekers, A.O., Third, K.A., Abma, W., Kuenen, J.G. and Jetten, M.S.M. (2003) CANON and Anammox in a gas-lift reactor. Fems Microbiology Letters 218(2), 339-344.

Stief, P. (2001) Influence of sediment and pore-water composition on nitrite accumulation in a nitrate-perfused freshwater sediment. Water Res 35(12), 2811-2818.

Strous, M., Kuenen, J.G. and Jetten, M.S.M. (1999) Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology 65(7), 3248-3250.

Tatton, M.J., Archer, D.B., Powell, G.E. and Parker, M.L. (1989) Methanogenesis from Ethanol by Defined Mixed Continuous Cultures. Applied and Environmental Microbiology 55(2), 440-445.

Tchobanoglous, G., Burton, F. L., Stensel, H. D. (2003) Wastewater Engineering: Treatment and Reuse. New York, NY: McGraw‐Hill.

White, G. F., and Thomas, R. T. (1990) Immobilization of the surfactant-degrading bacterium Pseudomonas C12B in polyacrylamide gel beads:effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use. Enzyme Microbiological Technology 12, 697-705.

Wijffels, R.H., de Gooijer, C.D., Kortekaas, S. and Tramper, J. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 2. Model evaluation. Biotechnol Bioeng 38(3), 232-240.

Wyffels, S., Boeckx, P., Pynaert, K., Zhang, D., Van Cleemput, O., Chen, G. and Verstraete, W. (2004) Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Science and Technology 49(5-6), 57-64.

Yang, P.Y., Cao, K. and Kim, S.J. (2002) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environment Research 74(3), 226-234.

Yang, P.Y., Zhang, Z.Q. and Jeong, B.G. (1997) Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Res 31(10), 2617-2625.

YangP.Y., Cai Tiande, Wang Ming-Li (1988) Immobilized Mixed Microbial Cells for Wastewater Treatment. Biological Waters 23, 295-312.

Zhang , Y., Love, N. and Edwards, M. (2009) Nitrification in drinking water systems. Crit. Rev. Environ. Sci. Technol. 39, 153-208.

Zumft, W.G. (1997) Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61(4), 533-616.

李姿逸 (2012),環保固化材料應用於固定生物程序去除廢水碳與氮,國立台灣大學環境工程學研究所,碩士論文

林瑞絃 (2012),平板式固定生物程序處理廢水碳氮之研究,國立台灣大學環境工程學研究所,碩士論文

陳豪吉,水庫淤泥輕質骨材之產製,輕質骨材混凝土會刊,創刊號,93年

楊以丞 (2013),環保固化材料結合輕質性骨材應用於固定化ㄥ樹程序去除廢水碳與氮,國立台灣大學環境工程學研究所,碩士論文

趙永楠 (2014),生物包埋技術提昇好氧環境之脫硝除氮效能,國立台灣大學環境工程學研究所,博士論文


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊