跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃教程
研究生(外文):Chiao-Cheng Huang
論文名稱:負載銅二氧化鈦光催化處理含鉻廢水之生命週期評估
論文名稱(外文):Life cycle environmental performance of photocatalyticremoval process for chromium wastewater by Cu/TiO2
指導教授:闕蓓德闕蓓德引用關係劉雅瑄
指導教授(外文):Pei-Te ChiuehYa-Hsuan Liou
口試委員:駱尚廉席行正胡景堯
口試委員(外文):Shang-Lien LoHsing-Cheng HsiChing-Yao Hu
口試日期:2016-06-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:131
中文關鍵詞:負載銅二氧化鈦異相光催化生命週期評估X 光近邊緣結構
外文關鍵詞:ChromiumCopper loading TiO2Heterogeneous photocatalysisLife cycle assessment (LCA);X-ray adsorption near edge structure (XANES)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉻(Chromium) 常應用於電鍍業、金屬表面處理業的製程中且在環境中主要以三價與六價氧化態存在,傳統的含鉻廢水處理方式為化學混凝法,此方法操作成本低但後續會產生大量的含鉻污泥,若未進行妥善處理,可能由掩埋場滲漏至土壤及地下水中造成嚴重的鉻污染。二氧化鈦異相光催化因化學穩定性、熱穩定性、低毒性以及低成本等優點,近年來廣泛應用於環境有機污染物或重金屬處理。
本研究以光沉積法製備負載銅二氧化鈦(Copper loading titanium dioxide, Cu/TiO2)作為光觸媒去除合成廢水中的鉻。結果顯示在中性條件下改質後的0.5 wt% Cu/TiO2 照光使鉻去除效率有顯著的提升。藉由BET、XRD 以及界達電位儀分析改質後觸媒的表面特性,且利用XANES 對光催化前後的觸媒表面鉻的氧化態與表面結構進行分析,證明六價鉻在暗吸附期間吸附於觸媒內部孔隙,而光催化期間銅會以CuO 及微量Cu2O 形式沉澱於觸媒表面,三價鉻則會以Cr2O3 物種形態於觸媒表面與銅形成共沉澱顆粒。另外,針對化學混凝法、電凝法、銅鐵雙金屬以及本研究之光催化試驗進行生命週期評估,以TRACI 2.1 衝擊評估方法量化四個案例的環境衝擊並進行比較,結果顯示銅鐵雙金屬以及光催化法的衝擊較化學混凝法及電凝法高,單向得點結果顯示衝擊熱點來自於材料製備程序中的電力消耗。敏感度分析結果顯示,一次觸媒產量提升兩倍,光催化法整體衝擊得點變動率47%,提升觸媒產量可有效降低光催化法整體衝擊得點。本研究依據綠色化學的原則,以儀器分析結果歸納光催化處理含鉻廢水的機制,並且以生命週期評估結果提供未來應用於實廠設計之參考。

Chromium is commonly used in electroplating and metal surface treatment process and mainly exists in the environment in the form of trivalent chromium and hexavalent chromium. Traditional treatment for chromium containing industrial wastewater is chemical coagulation, which is a low-cost method in operation. However, chromium containing sludge created in this process may cause significant chromium pollution through leaching from landfill to soil and groundwater if it was not properly disposed of. A potential alternative is the use of heterogeneous photocatalysis with TiO2, which has been widely applied for organic pollution degradation and heavy metal removal in recent years due to its chemical and thermal stability, low toxicity and low cost. This study aimed to remove chromium metal from synthetic wastewater with Cu/TiO2 prepared by photodeposition method. The results show that the 0.5 wt% Cu/TiO2 has a
much better chromium removal efficiency than TiO2 under neutral condition. BET, XRD and Zeta Potential Analyzer were used to measure catalyst surface property. XANES was used to measure the surface structure and the oxidation state of chromium adsorbed inside the catalyst pore. The results clearly prove that a trace amount of Cr(VI) was adsorbed by catalyst during dark adsorption period. During photocatalysis, Copper deposit on the surface mainly in the form of CuO with trace amount of Cu2O and Cr(III) form codeposition with copper on catalyst surface mainly in the form of Cr2O3. Life cycle assessment of this study used TRACI 2.1 impact assessment model to quantify and compare the environmental impact of chemical coagulation, electrochemical coagulation, copper-iron bimetallic and photocatalysis process which was conducted
previously. The results show that copper-iron bimetallic and photocatalysis process have a higher impact than chemical coagulation and electrochemical coagulation. The
single point results show that the impact hotspot was mainly attributed to the electricity consumption of catalyst production process. The results of sensitivity analysis show doubling catalyst yield leads 47% variation to the total impact of photocatalysis process, which shows increasing catalyst yield could effectively reduce the total impact of photocatalysis process. This investigation was conducted based on the principles of green chemistry, summarizing the mechanism of photocatalytic process for chromium removal from wastewater. LCA results provide suggestions for future application to full-scale plant.

中文摘要...................................................................................................................... II
Abstract ........................................................................................................................ III
目錄..............................................................................................................................V
圖目錄......................................................................................................................VIII
表目錄.........................................................................................................................XI
第一章緒論 .................................................................................................................1
1.1 研究緣起.........................................................................................................1
1.2 研究目的.........................................................................................................2
第二章文獻回顧 .........................................................................................................3
2.1 鉻的特性、污染現況及處理技術.................................................................3
2.1.1 鉻的物理化學特性..............................................................................3
2.1.2 工業廢水中鉻的來源及用途..............................................................4
2.1.3 鉻的污染現況......................................................................................4
2.1.4 含鉻廢水處理技術..............................................................................5
2.2 光催化反應.....................................................................................................9
2.2.1 光化學原理..........................................................................................9
2.2.2 二氧化鈦的結構與特性....................................................................10
2.2.3 二氧化鈦光催化原理........................................................................ 11
2.2.4 影響二氧化鈦光催化反應因素........................................................14
2.3 二氧化鈦改質...............................................................................................18
2.3.1 添加金屬改質....................................................................................18
2.3.2 表面敏化改質....................................................................................20
2.3.3 複合半導體........................................................................................20
2.4 綠色化學.......................................................................................................21
2.4.1 綠色化學發展演進............................................................................22
2.4.2 綠色化學的12 項原則......................................................................22
2.4.3 綠色化學原則下將生命週期評估應用於奈米材料的永續設計....23
2.5 生命週期評估法...........................................................................................25
2.5.1 生命週期評估之方法介紹................................................................27
2.5.2 衝擊評估模式介紹............................................................................28
2.5.3 不確定性分析....................................................................................29
2.5.4 生命週期評估模式之案例................................................................31
第三章研究方法與材料 ...........................................................................................34
3.1 研究架構與內容...........................................................................................34
3.2 測量儀器.......................................................................................................36
3.2.1 材料表面分析儀器............................................................................36
3.2.2 六價鉻與總鉻分析儀器....................................................................39
3.3Cu/TiO2 材料製備..........................................................................................40
3.4 六價鉻光催化還原試驗...............................................................................40
3.4.1 批次試驗............................................................................................40
3.4.2 水樣分析方法....................................................................................42
3.5 生命週期評估方法.......................................................................................43
3.5.1 目標與範疇界定................................................................................43
3.5.2 案例說明............................................................................................45
3.5.3 盤查清單............................................................................................49
3.5.4 衝擊評估............................................................................................54
3.5.5 不確定性分析....................................................................................58
第四章結果與討論 ...................................................................................................59
4.1 材料表面特性與結構分析...........................................................................59
4.1.1 比表面積與孔徑分析........................................................................59
4.1.2 XRD ....................................................................................................59
4.1.3 界達電位............................................................................................60
4.2 銅負載量試驗...............................................................................................61
4.3 暗吸附試驗...................................................................................................62
4.4 光催化批次試驗...........................................................................................65
4.4.1 不同pH 值條件對六價鉻光催化的影響..........................................65
4.4.2 不同光觸媒劑量下對光催化的影響................................................74
4.4.3 加入不同電洞捕捉劑種類對光催化的影響....................................78
4.5 六價鉻光催化還原反應動力模式...............................................................82
4.6 以XANES 分析光催化反應前後觸媒表面結構變化................................87
4.7 生命週期評估結果.......................................................................................94
4.7.1 Case 1..................................................................................................94
4.7.2 Case 2..................................................................................................96
4.7.3 Case 3..................................................................................................98
4.7.4 Case 4................................................................................................100
4.7.5 各案例綜合討論結果......................................................................102
4.7.6 臺灣2014 年能源電網之衝擊評估................................................105
4.7.7 敏感度分析......................................................................................108
4.7.8 Case 4 使用TiO2 與Cu/TiO2 之結果比較...................................... 113
4.7.9 不確定性分析.................................................................................. 115
第五章 結論與建議.................................................................................................120
5.1 結論.............................................................................................................120
5.2 建議.............................................................................................................122
參考文獻...................................................................................................................124
附錄...........................................................................................................................130


Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chem Soc Rev, 39(1), 301-312.
Arroyo, M. G., Perez-Herranz, V., Montanes, M. T., Garcia-Anton, J., & Guinon, J. L. (2009). Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J Hazard Mater, 169(1-3), 1127-1133.
Bacsa, R. R., & Gratzel, M. (1996). Rutile formation in hydrothermally crystallized nanosized titania. Journal of the American Ceramic Society, 79(8), 2185-2188.
Bare, J., Gloria, T., & Norris, G. (2006). Development of the Method and U.S. Normalization Database for Life Cycle Impact Assessment and Sustainability Metrics. Environ Sci Technol, 40(16), 5108-5115.
Bare, J. C., Hofstetter, P., Pennington, D. W., & Udo de Haes, H. A. (2000). Life Cycle Impact Assessment Workshop Summary Midpoints versus Endpoints: The Sacrifices and Benefits. The International Journal of Life Cycle Assessment, 5(6), 319-326.
Cassano, A. E., & Alfano, O. M. (2000). Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today, 58(2-3), 167-197.
Chen, S. F., & Cao, G. Y. (2005). Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos. Chemosphere, 60(9), 1308-1315.
Cheng, Q., Wang, C. W., Doudrick, K., & Chan, C. K. (2015). Hexavalent chromium removal using metal oxide photocatalysts. Applied Catalysis B: Environmental, 176-177, 740-748.
Chenthamarakshan, C. R., Rajeshwar, K., & Wolfrum, E. J. (2000). Heterogeneous Photocatalytic Reduction of Cr(VI) in UV-Irradiated Titania Suspensions: Effect of Protons, Ammonium Ions, and Other Interfacial Aspects. Langmuir, 16, 2715-2721.
Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Res, 44(10), 2997-3027.
Ciavatta, C. (2012). Chromium-Containing Organic Fertilizers from Tanned Hides and Skins: A Review on Chemical, Environmental, Agronomical and Legislative Aspects. Journal of Environmental Protection, 03(11), 1532-1541.
Cromer, D. T., & Herrington, K. (1955). The Structures of Anatase and Rutile. Journal of the American Chemical Society, 77(18), 4708-4709.
Eckelman, M. J. (2016). Life cycle inherent toxicity: a novel LCA-based algorithm for evaluating chemical synthesis pathways. Green Chem.
Elsalamony, R., & El-Hafiza, D. A. (2014). Influence of Preparation Method on Copper Loaded Titania Nanoparticles: Textural, Structural Properties and Its Photocatalytic Activity towards P-Nitrophenol. Chemistry and Materials Research, 6(4), 122-134.
Favara, P. J., Krieger, T. M., Boughton, B., Fisher, A. S., & Bhargava, M. (2011). Guidance for performing footprint analyses and life-cycle assessments for the remediation industry. Remediation Journal, 21(3), 39-79.
Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12.
Gilbertson, L. M., Zimmerman, J. B., Plata, D. L., Hutchison, J. E., & Anastas, P. T. (2015). Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chem Soc Rev, 44(16), 5758-5777.
Groen, E. A., Heijungs, R., Bokkers, E. A. M., & de Boer, I. J. M. (2014). Methods for uncertainty propagation in life cycle assessment. Environmental Modelling & Software, 62, 316-325.
Grolimund, D., Trainor, T. P., Fitts, J. P., Kendelewicz, T., Liu, P., Chambers, S. A., & Brown, G. E., Jr. (1999). Identification of Cr species at the aqueous solution-hematite interface after Cr(VI)-Cr(III) reduction using GI-XAFS and Cr L-edge NEXAFS. Journal of Synchrotron Radiation, 6(3), 612-614.
Hamadanian, M., Karimzadeh, S., Jabbari, V., & Villagrán, D. (2016). Synthesis of cysteine, cobalt and copper-doped TiO2 nanophotocatalysts with excellent visible-light-induced photocatalytic activity. Materials Science in Semiconductor Processing, 41, 168-176.
Hamann, T. W., Jensen, R. A., Martinson, A. B. F., Van Ryswyk, H., & Hupp, J. T. (2008). Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 1(1), 66.
Heidmann, I., & Calmano, W. (2008). Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Separation and Purification Technology, 61(1), 15-21.
Hu, C. Y., Lo, S. L., Liou, Y. H., Hsu, Y. W., Shih, K., & Lin, C. J. (2010). Hexavalent chromium removal from near natural water by copper-iron bimetallic particles. Water Res, 44(10), 3101-3108.
Huijbregts, M. A. J. (1998). Application of Uncertainty and Variability in LCA. International Journal of Life Cycle Assessment, 3(5), 273-280.
Ishii, S. K., & Boyer, T. H. (2015). Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Water Res, 79, 88-103.
Kikuchi, T., & Aramaki, K. (2000). The inhibition effects of anion and cation inhibitors on corrosion of iron in an anhydrous acetonitrile solution of FeCl3. Corrosion Science, 42(5), 817-829.
Koiwanit, J., Piewkhaow, L., Zhou, Q., Manuilova, A., Chan, C. W., Wilson, M., & Tontiwachwuthikul, P. (2013). A life cycle assessment study of a Canadian post-combustion carbon dioxide capture process system. The International Journal of Life Cycle Assessment, 19(2), 357-369.
Kralisch, D., Ott, D., & Gericke, D. (2015). Rules and benefits of Life Cycle Assessment in green chemical process and synthesis design: a tutorial review. Green Chem., 17(1), 123-145.
Ku, Y., & Jung, I. L. (2001). PHOTOCATALYTIC REDUCTION OF Cr(VI) IN AQUEOUS SOLUTIONS BY UV IRRADIATION WITH THE PRESENCE OF TITANIUM DIOXIDE. Water Res, 35(1), 135-142.
Kumar, K. V., Porkodi, K., & Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84.
Lakshmipathiraj, P., Raju, G. B., Basariya, M. R., Parvathy, S., & Prabhakar, S. (2008). Removal of Cr (VI) by electrochemical reduction. Separation and Purification Technology, 60(1), 96-102.
Lautier, A., Rosenbaum, R. K., Margni, M., Bare, J., Roy, P. O., & Deschenes, L. (2010). Development of normalization factors for Canada and the United States and comparison with European factors. Sci Total Environ, 409(1), 33-42.
Liu, W., Ni, J., & Yin, X. (2014). Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO(2) and titanate nanotubes. Water Res, 53, 12-25.
Loosli, F., & Stoll, S. (2012). Adsorption of TiO2 Nanoparticles at the Surface of Micron-Sized Latex Particles. pH and Concentration Effects on Suspension Stability. Journal of Colloid Science and Biotechnology, 1(1), 113-121.
Ma, C. M., Shen, Y. S., & Lin, P. H. (2012). Photoreduction of Cr(VI) Ions in Aqueous Solutions by UV/TiO2 Photocatalytic Processes. International Journal of Photoenergy, 2012, 1-7.
Maeda, K., Teramura, K., Lu, D., Saito, N., Inoue, Y., & Domen, K. (2006). Noble‐Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie, 118(46), 7970-7973.
Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59.
Mo, S.-D., & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19), 13023-13032.
Mosquera, A. A., Endrino, J. L., & Albella, J. M. (2014). XANES observations of the inhibition and promotion of anatase and rutile phases in silver containing films. Journal of Analytical Atomic Spectrometry, 29(4), 736.
Mouedhen, G., Feki, M., De Petris-Wery, M., & Ayedi, H. F. (2009). Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. J Hazard Mater, 168(2-3), 983-991.
Perissinotti, L. L., Brusa, M. A., & Grela, M. A. (2001). Yield of Carboxyl Anion Radicals in the Photocatalytic Degradation of Formate over TiO2 Particies. Langmuir, 17, 8422-8427.
Phungrassami, H. (2008). A Review of Time Consideration in Life Cycle Assessment. Global Journal of Environmental Research, 2(2), 62-65.
Pourzahedi, L., & Eckelman, M. J. (2015). Environmental life cycle assessment of nanosilver-enabled bandages. Environ Sci Technol, 49(1), 361-368.
Powell, R. M., Puls, R. W., Hightower, S. K., & Sabatini, D. A. (1995). Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol, 29(8), 1913-1922.
Rahman, S. M., Eckelman, M. J., Onnis-Hayden, A., & Gu, A. Z. (2016). Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment. Environ Sci Technol, 50(6), 3020-3030.
Ryberg, M., Vieira, M. D. M., Zgola, M., Bare, J., & Rosenbaum, R. K. (2013). Updated US and Canadian normalization factors for TRACI 2.1. Clean Technologies and Environmental Policy, 16(2), 329-339.
Saer, A., Lansing, S., Davitt, N. H., & Graves, R. E. (2013). Life cycle assessment of a food waste composting system: environmental impact hotspots. Journal of Cleaner Production, 52, 234-244.
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., & Hidaka, H. (1995). Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255.
Shah, Z. H., Wang, J., Ge, Y., Wang, C., Mao, W., Zhang, S., & Lu, R. (2015). Highly enhanced plasmonic photocatalytic activity of Ag/AgCl/TiO2by CuO co-catalyst. J. Mater. Chem. A, 3(7), 3568-3575.
Soares, O. S. G. P., Pereira, M. F. R., Órfão, J. J. M., Faria, J. L., & Silva, C. G. (2014). Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 251, 123-130.
Sowmya, T. P., Mahadevraju, G. K., Ramesh, A., & Sreenivas, V. (2013). Optimization Of Hexavalent And Trivalent Chromium Present In Waste Water By Chemical Treatment. International Journal of Engineering Research and Applications, 3(3), 817-820.
Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., & Biswas, P. (2011). Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Research Letter, 6(27).
Szaciłowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M., & Stochel, G. (2005). Bioinorganic Photochemistry Frontiers and Mechanisms. Chemical Reviews, 105(6), 2647-2694.
Takata, T., Pan, C., Nakabayashi, M., Shibata, N., & Domen, K. (2015). Fabrication of a Core-Shell-Type Photocatalyst via Photodeposition of Group IV and V Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting. J Am Chem Soc, 137(30), 9627-9634.
Testa, J. J., Grela, M. A. A., & Litter, M. I. (2001). Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2. Langmuir, 17, 3515-3517.
Testa, J. J., Grela, M. A. A., & Litter, M. I. (2004). Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2 Particles in the Presence of Oxalate: Involvement of Cr(V) Species. Environ Sci Technol, 38, 1589-1594.
Valari, M., Antoniadis, A., Mantzavinos, D., & Poulios, I. (2015). Photocatalytic reduction of Cr(VI) over titania suspensions. Catalysis Today, 252, 190-194.
Wang, N., Zhu, L. H., Deng, K. J., She, Y. B., Yu, Y. M., & Tang, H. Q. (2010). Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Applied Catalysis B: Environmental, 95(3-4), 400-407.
Wang, X. L., Pehkonen, S. O., & Ray, A. K. (2004). Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation. Industrial & Engineering Chemistry Research, 43, 1665-1672.
Warner, J. C., Cannon, A. S., & Dye, K. M. (2004). Green chemistry. Environmental Impact Assessment Review, 24(7-8), 775-799.
Williamson, T. C., & Anatas, P. T. (1999). Green chemistry: A new approach to pollution prevention. Paper presented at the ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY.
Yami, T. L., Du, J., Brunson, L. R., Chamberlain, J. F., Sabatini, D. A., & Butler, E. C. (2015). Life cycle assessment of adsorbents for fluoride removal from drinking water in East Africa. The International Journal of Life Cycle Assessment, 20(9), 1277-1286.
Yu, J., Hai, Y., & Jaroniec, M. (2011). Photocatalytic hydrogen production over CuO-modified titania. J Colloid Interface Sci, 357(1), 223-228.
Zhang, J. L., Xiao, L., Cong, Y., & Anpo, M. (2008). Preparation and Characterization of Multi-functional Titanium Dioxide Photocatalysts. Topics in Catalysis, 47(3-4), 122-130.
Zhou, J., Chang, V. W. C., & Fane, A. G. (2011). Environmental life cycle assessment of reverse osmosis desalination: The influence of different life cycle impact assessment methods on the characterization results. Desalination, 283, 227-236.
吳心怡(2009)。以奈米零價單金屬及複合金屬處理六價鉻之研究。嘉南藥理科技大學環境工程與科學研究所,台南市。
許雅雯(2006)。以鐵負載銅及貴金屬微粒還原水中鉻酸鹽研究許雅雯 駱尚廉 2006。國立國立臺灣大學環境工程學研究所,台北市。
陳思穎(2009)。選擇性催化加氫技術還原硝酸鹽之研究。國立國立臺灣大學環境工程學研究所,台北市。
游昇霖(2014)。光電催化程序還原水溶液中六價鉻之研究。國立臺灣科技大學化學工程系,台北市。
劉瑋婷(2009)。以負載銅、銀之改質二氧化鈦結合MCM-41 進行光催化產氫之研究。國立交通大學環境工程研究所,新竹市。
劉緁玲(2012)。數種不確定性分析方法於降雨引發坡地淺崩塌模式之比較研究。國立交通大學土木工程學系,新竹市。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top