跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江宇勛
研究生(外文):Yu-xun Jiang
論文名稱:特定藥品在臭氧程序中之反應速率常數和降解之研究
論文名稱(外文):The rate constants and degradation of selected pharmaceuticals in water ozonation
指導教授:林逸彬
指導教授(外文):Yi-Pin Lin
口試委員:林郁真席行正
口試日期:2016-08-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:藥品臭氧氫氧自由基鍊式反應
外文關鍵詞:PharmaceuticalsozoneOH radicalchain reactions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著人們對於個人健康和生活品質要求的提高,藥品的生產和使用量與日俱增。與此同時,生活污水和製藥工業廢水中所包含的藥品,因其對自然環境和人體存在潛在的影響,已成為一項不可忽視的問題。由於廢水中的藥品成分複雜且濃度較低,傳統活性污泥法和物理處理程序在去除藥品時效果有限,因此臭氧降解等高級氧化程序更加受到關注。藥品及相關有機污染物在和臭氧反應時機制複雜,可能可以直接與臭氧反應,又可以在臭氧降解的自由基鍊式反應中扮演起始劑 (initiator)、促進劑 (promoter)以及抑製劑 (inhibitor)的角色。由於藥品在反應中的角色和動力學機制尚未得到充分闡明,因此本研究的目的為:(1) 選擇特定6種藥品,利用現有的臭氧自由基鍊式反應模型,測定藥品在臭氧處理程序中與臭氧直接反應、起始反應、促進反應以及抑制反應的速率常數;(2) 基於測得之反應速率常數,模擬藥品在臭氧降解過程中的濃度變化,並與實際情況進行比對分析。結果顯示,6種藥品的四個速率常數可以被實驗分別測得,但相較於文獻中藥品與臭氧或自由基反應之總速率常數,其結果在不同程度上偏大;模擬的結果表明,受到中間產物及水中痕量有機物等可能原因之影響,尚不能有效模擬降解過程,整體模擬之降解速率偏快。在後續的實驗中,減少中間產物和背景值的干擾,提升速率常數的精確度是需要關注的主要問題。

With the higher demand for personal health and better quality of life, the productions and usages of pharmaceuticals increased over the years. Because of the potential impacts on ecology and human health, the removal of pharmaceuticals from the aquatic environments is highly desirable. The effectiveness of removing pharmaceuticals from wastewater by conventional wastewater treatment processes has been found to be limited for some pharmaceuticals. Advanced oxidation processes such as ozonation have received more attentions to remove these compounds. With diverse functional groups in the structures, pharmaceuticals could potentially react directly with ozone, as well as react as the initiator, promoter and inhibitor in the OH radical chain reactions resulting from ozone decomposition, which have not been considered before. The purposes of this study are (1) to determine the rate constants of 6 selected pharmaceuticals in terms of direct ozone reaction, initiation, promotion and inhibition in ozonation; (2) to simulate the degradation of pharmaceuticals based on the determined rate constants. The results showed that the rate constants of 6 pharmaceuticals could be determined but the values are greater than the “lumped” rate constants reported in the literature. The model simulation predicted faster degradation than the experimental observations, which could be caused by the interferences causing by the intermediates formed during ozonation and background trace organics.

CONTENTS
摘要………………………………………………………………I
Abstract…………………………………………………………II
Contents…………………………………………………………III
Figures…………………………………………………………V
Tables……………………………………………………………IX
Chapter 1 Introduction………………………………………1
1.1 Research background……………………………………………1
1.2 Objectives……………………………………………………….2
Chapter 2 Literature review………………………………………………3
2.1 Basic properties of ozone……………………3
2.2 Direct ozone reaction and OH radical chain reactions…………3
2.3 Reaction kinetics and Rct concept of ozonation process………5
2.4 Ozonation of pharmaceuticals…………………………10
Chapter 3 Materials and methods………………………………………14
3.1 Chemicals and reagents…………………………………14
3.2 Stock solutions…………………………………………14
3.3 Analytical Methods………………………………………15
3.4 Ozonation experiments…………………………………17
Chapter 4 Results and discussion………………………………………18
4.1 The initiation, promotion, inhibition and direct ozone reaction rate constants of selected pharmaceuticals.……………………………18
4.2 Removal of pharmaceuticals and model simulations using determined rate constants……………………………………………39
4.3 Resimulations of pharmaceutical removal……….……………44
Chapter 5 Conclusions and recommendations………………………….49
5.1 Conclusions……………………………………………………49
5.2 Recommendations……………………………………………..50
References………………………………………………………………51


REFERENCES
APHA;WWA;WDF, 2012. Standard methods for the examination of water and wastewater, 21 st Ed. In APHP: Washington, DC.
Audenaert, W.T.M., Vandierendonck, D., Van Hulle, S.W.H., Nopens, I., 2013. Comparsion of ozone and HO· induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Research 47, 2387-2398.
Benotti, M.J., Brownawell, B.J., 2009. Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution 157, 994-1002.
Boxall, A.B.A., Rudd, A.M., Brooks, B.W., 2012. Pharmaceuticals and personal care products in the environment: What are the big questions. Environmental Health Perspectives 120(9), 1221-1229.
Broséus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauvé, S., Barbeau, B., Prévost, M., 2009. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Research 43, 4707-4717.
Buffle, M.O., Schumacher, J., Salhi, E., Jekel, M., von Gunten, U.,2006. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: Application to disinfection and pharmaceutical oxidation. Water Research 40, 1884-1894.
Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B., 1988. Critical review of rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. Journal of Physical and Chemical Reference Data 17 (2), 51-886.
Cai, M.J., Lin, Y.P., 2016. Effects of effluent organic matter (EfOM) on the removal of emerging contaminants by ozonation. Chemosphere 151, 332-338.
Dalmazio, I., Santos, L.S., Lopes, R.P., Eberlin, M.N., Augusti, R., 2005. Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry. Environmental Science and Technology 39, 5982-5988.
Daughton, C.G., Ternes, T.A., 1999. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives 107, 907-938.
Dodd, M.C., Buffle, M.O., von Gunten, U., 2006. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics an application to ozone-based wastewater treatment. Environmental Science and Technology 40, 1969-1977.
Dutta, K., Lee, M.Y., Lai, W.W.P., Lee, C.H., Lin, Y.C., Lin, C.F., Lin, J.G., 2014. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource Technology 165, 42-49.
Ellis, J.B., 2006. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental Pollution 144, 184-189.
Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Scicence and Engineering 21 (3), 239–260.
Elovitz, M.; von Gunten, U.; Kaiser, H. P., 2000. The influence if dissolved organic matter character on ozone decomposition rates and Rct. ACS Symposium Series 761, 248-269.
Ferrari, B., Paxeus, N., Giudice, R.L., Pollio, A., Garric, J., 2003. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety 56, 450.
Gagnon, M.A., Lexchin, J., 2008. The cost of pushing pills: a new estimate of pharmaceutical promotion expenditures in the United States. PLoS Medicine 5, 29-33.
Glaze, W. H., 1987. Drinking water treatment with ozone. Environmental Science and Technology 21 (3), 224-230.
Glaze, W.H., Kang, J.W., Chapin, D.H., 1985. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Scicence and Engineering 9, 335-352.
Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science and Technology 37(15), 3243-3249.
Goni-urriza, M., Capdepuy, M., Arpin, C., Quentin, C., Raymond, N., Caumette, P., 2000. Impact of an urban effluent on antibiotic resistance of riverine enterobacteriaceae and aeromonas spp. American Society for Microbiology 66, 125-132.
Haag, W. R.; Yao, C. C. D., 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science and Technology 26, 1005-1013.
Halling-Sorensen, B., Nielson, S.N., Lanzky, P.F., Ingerslev, F., Holten Lutzhoft, H.C., Jorgnsen, S.E., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36, 357-393.
Heberer, T., Stan, H.-J., 1997. Determination of clofibric acid and N-(phenylsulfonyl)-sarcosine in sewage, river and drinking water. International Journal of Environmental Analytical Chemistry 67, 113-124.
Heron, R.J.L., Pickering, F.C., 2003. Health effects of exposure to active pharmaceutical ingredients (APIs). Occupational Medicine 53, 357–362.
Hoigné, J.; Bader, H., 1979. Ozonation of water: Selectivity and rate of oxidation of solutes. Ozone: Science & Engineering 1, 73-85.
Hoigne, J., Bader, H., 1983. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds. Water Research 17, 173-183.
Hoigne, J., Bader, H., 1983. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: Dissociating organic compounds. Water Research 17, 185-194.
Hu, H.Y., Wang, C., Guo, M.T., 2005. The present status of environmental pollution by pharmaceuticals and personal care products (PPCPs). Ecology and Environment 14(6), 947-952.
Huber, M.M., Canonica, S., Park, G.Y., von Gunten, U., 2003. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science and Technology 37, 1016-1024.
Huber, M.M., Gobel, A., Joss, A., Hermann, N., Loffler, D., Mcardell, C.S., Ried, A., Sigerist, H., Ternes, T.A., von Gunten, U., 2005. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science and Technology 39, 4290-4299.
Ikehata, K., Naghashkar, N.J., El-Din, M.G., 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Science and Engineering 28, 353-414.
Jolanta, D., Kot-Wasik, A., Jacek, N., 2004. Fate and analysis of pharmaceutical residues in the aquatic environment [J]. Critical Reviews in Analytical Chemistry 34, 51-67.
Jones, P.D., Nakata, H., Kannan, K., Giesy, J.P., 2005. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography–mass spectrometry and fluorescence detection. Chemosphere 58, 759-766.
Joss, A., Gobel, A., Thomsen, A., Siegrist, H., 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research 40, 1686-1696.
Kesavan, P.C., Powers, E.L., 1985. Differential modification of oxic and anoxic components of radiation damage in bacillus megaterium spores by caffeine. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 48, 223-233.
Kim, S., D.; Cho, J.; Kim, I. S.; Vanderford, B. J.; Snyder, S. A., 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and wastewaters. Water Research 41, 1013-1021.
Langlais, B.; Reckhow, D. A.; Brink, D. R., 1991. Ozone in water treatment: application and engineering. Lewis Publishers.
Laville, N., Aissa, S.A., Gomez, E., Casellas, C., Porcher, J.M., 2004. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196, 41-55.
Leenheer, J.A., Wershaw, R.L., Reddy, M.M., 1995. Strong-acid, carboxyl-group structures in fulvic Acid from the Suwannee river, Georgia. 1. Minor Structures. Environmental Science and Technology 29 (2), 393-398.
Leitner, N.K.V., Dore, M., 1996. Hydroxyl radical induced decomposition of aliphatic acids in oxygenated and deoxygenated aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry 99, 137-143.
Lin, Y.C., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 78, 131-141.
Metcalfe, C.; Miao, X. S.; Hua, W.; Letcher, R.; Servos, M., 2004. Pharmaceuticals in the Canadian environment. Pharmaceuticals in the Environment 6, 67-90.
Mezyk, S. P.; Neubauer, T.J., Cooper, W.J., Peller, J.R., Free-radical-induced oxidative and reductive degradation of sulfa drugs in water:  Absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions. The Journal of Physical Chemistry A 2007, 111(37), 9019-9024.
Mompelat, S., Bot, B.L., Thomas, O., 2009. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International 35, 803-814.
Mvula, E., von Sonntag, C., 2003. Ozonolysis of phenols in aqueous solution. Organic & biomolecular chemistry 1, 1749-1756.
Neta, P.; Dorfman, L. M., 1968. Pulse radiolysis studies. XIII: Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Advances in Chemistry Series 81, 222-230.
Neves, C.M.B., Simoes, M.M.Q., Santos, I.C.M.S., 2011. Oxidation of caffeine with hydrogen peroxide catalyzed by metalloporphyrins. Tetrahedron Letters 52, 2898–2902.
Ng, K.K., Lin, Y.C., Yu, T.H., Lin, C.F., 2011. Tertiary treatment of pharmaceuticals and personal care products by pretreatment and membrane processes. Sustainable Environment Research 21(3), 173-180.
Nothe, T., Fajlenkamp, H., von Sonntag, C., 2009. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield. Environmental Science and Technology 43, 5990-5995.
Onstad, G.D., Strauch, S., Meriluoto, J., Codd, G.A., von Gunten, U., Selective oxidation of key functional Groups in cyanotoxins during drinking water ozonation. Environmental Science and Technology 41(12), 4397-4404.
PILLS, 2012. Annual report 2012: the state of the drugs problem in Europe. European Monitoring Centre for Drugs and Drug Addiction 1-99.
Purdom, C.E., Hardiman, A.P., Bye, V.V.J., Eno, N.C., 1994. Estrogenic effects of effluents from sewage treatment Works. Chemistry and Ecology 8, 275-285.
Real, F.J., Benitez, F.J., Acero, J.L., Sagasti, J.J.P., Casas, F., 2009. Kinetics of the chemical oxidation of the pharmaceuticals primidone, ketoprofen, and diatrizoate in ultrapure and natural waters. Industrial & Engineering Chemistry Research (48) 7, 3380-3388.
Rice, R.G., 1999. Ozone in the United States of America -- state-of-the-art. Ozone: Science & Engineering 21, 99-118.
Rubin, M.B., 2001. The history of ozone. Bulletin for the History of Chemistry 26, 40-56.
Schuchmann, M.N., Schuchmann, H.P., von Sonntag,C., 1995. Oxidation of hydroxymalonic acid by OH radicals in the presence and in the absence of molecular oxygen. A pulse-radiolysis and product study. Journal of Physical Chemistry, 99(22), 9122-9129.
Snyder, S. A.; Wert, E. C.; Rexing, D. J.; Zegers, R. E.; Drury, D. D., 2006. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone: Science and Engineering 28 (6), 445-460.
Stackelberg, P.E., Furlong, E.T., Meyer, M.T., ZauggS.D., Henderson, A.K., Reissman, D.B., 2004. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of the Total Environment 329, 99-113.
Staehelin, J., Hoigne, J., 1985. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science and Technology 19, 1206-1213.
Streng, A.G., 1961. Tables of ozone properties. Journal of Chemical and Engineering Data 6, 431-436.
Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Braych, H.J., Haist-Gukde, B., Preuss, G., Wilme, U., Zulei-Seibert, N., 2002. Removal of pharmaceuticals during drinking water treatment. Environmental Science and Technology 36, 3855-3863.
Thorpe, K.L., Cummings, R.I., Hutchinson, T.H., Scholze, M., Brighty, G., Sumpter, J.P., Tyler, C.R., 2003. Relative potencies and combination effects of steroidal estrogens in fish. Environmental Science and Technology 37(6), 1142-1149.
Tiwari, B.K., Brennan, C.S., Curran, T., Gallagher, E., Cullen, P.J., O’ Donnell, C.P., 2010. Application of ozone in grain processing. Journal of Cereal Science 51, 248–255.
von Gunten, U., 2003. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research 37, 1443-1467.
von Gunten, U., 2003. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 37, 1469-1487.
von Sonntag, C., von Gunten, U., 2012. Chemistry of ozone in water and wastewater treatment: From basic principles to applications. IWA Publishing London, UK.
Wang, X.H., Lin, Y.C., 2012. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental Science and Technology 46, 12417-12426.
Westerhoff, P.; Mezyk, S. P.; Cooper, W. J.; Minakata, D., 2007. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates. Environmental Science and Technology 41 (13), 4640-4646.
Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology 39 (17), 6649-6663.
Wieser, G., Havranek, W.M., 1993. Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7, 227-232.
Willson, R. L.; Greenstock, C. L.; Adams, G. E.; Wageman, R.; Dorfman, L. M., 1971. The standardization of hydroxyl radical rate data from radiation chemistry. International Journal for Radiation Physics and Chemistry 3(3), 211-220.
Yao, C. C. D.; Haag, W. R., 1991. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Research 25 (7), 761-773.
Yong, E.L., Lin, Y.P., 2012. Kinetics of natural organic matter as the initiator, promoter and inhibitor in water ozonation and its influences on the removal of ibuprofen in ozonation. Ozone: Scicence and Engineering 35, 472-481.
Yong, E.L., Lin, Y.P., 2016. Effects of pH value and temperature on the initiation, promotion, inhibition and direct reaction rate constants of natural organic matter in ozonation. RSC Advances 6, 18587-18595.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top