跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張伊芸
研究生(外文):I-Yun Chang
論文名稱:燈光及植物精油對重要吸血雙翅目昆蟲之推-拉防治策略探討:以蚊科及臺灣鋏蠓為例
論文名稱(外文):The push-pull control strategies of light and indigenous plant essential oils against the important blood-sucking insects (Diptera) in Taiwan: study of mosquito (Culicidae) and Forcipomyia taiwana (Ceratopogonidae)
指導教授:蔡坤憲蔡坤憲引用關係
指導教授(外文):Kun-Hsien Tsai
口試委員:鄭森松王正雄施惟量
口試委員(外文):Sen-Sung ChengCheng-Hsung WangWei-Liang Shih
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:病媒防治推-拉防治策略病媒蚊台灣鋏蠓燈光誘集器植物精油抗幼蟲活性忌避活性
外文關鍵詞:vector controlpush-pull control strategymosquitoForcipomyia taiwanalight trapessential oillarvicidal activityrepellent activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蚊子 (蚊科) 是重要的病毒媒介者,會傳播嚴重的蟲媒傳染病如瘧疾、黃熱病及登革熱等。臺灣位處高溫多濕的環境,不僅適合病媒蚊生長更是登革熱盛行的地區。另外,臺灣本土的吸血性蠓科昆蟲,臺灣鋏蠓 (Forcipomyia taiwana),亦分布於全臺,是嚴重的騷擾性害蟲,受叮咬的人不僅會出現紅腫、搔癢等過敏反應,更因其體型微小不易察覺,嚴重影響人們的生活品質及出外旅遊時的興致。本研究致力於開發出對病媒蚊及臺灣鋏蠓有效且對環境友善的整合型防治方法,利用推-拉防治策略 (Push-Pull Control Strategy),結合物理性誘集因子的燈光,及化學性忌避因子的植物精油,來誘集臺灣鋏蠓的成蟲、忌避臺灣鋏蠓和病媒蚊的成蟲,並探討植物精油抗臺灣鋏蠓幼蟲的活性。首先實驗結果顯示,在實驗室內,可見光藍光 (400~450 nm) 的光源對臺灣鋏蠓之誘引率為70.7%,達紫光UVA (352 nm) 光源誘引率 (18.3%) 及紫外光UVB (306 nm) 光源誘引率 (16.0%) 的三倍以上。野外試驗中,紅光 (630 nm) 的平均誘引率為最高,達7.4%。藍光 (波長450 nm) 平均誘引率為1.8%,綠光 (510 nm) 平均誘引率為2.2%,全波長 (380-780 nm) 螺旋燈泡平均誘引率為2.8%,UV燈泡平均誘引率則為0%。第二,六種植物精油毒殺臺灣鋏蠓幼蟲的能力依序是:土肉桂葉子精油=過山香葉子精油>澳洲茶樹葉子精油>白珠樹葉子精油>黑心柳杉葉子精油>小葉樟葉子精油。當土肉桂精油濃度大於7.9 μg/cm2時,幼蟲存活率為0%。過山香、澳洲茶樹、白株樹及小葉樟精油濃度為15.8 μg/cm2時,幼蟲存活率分別是0%、20%、50%及86.7%,第三,探討黑心柳杉及土肉桂精油在濃度分別為20%、10%、5%、2.5%、及1.75%對臺灣鋏蠓的忌避率,陽性對照組為15% DEET。結果顯示黑心柳杉120鐘內的平均忌避率在精油濃度為20%、10%、5%、2.5%及1.75%時依序為40.9±15%、59.1±13.2%、55.1±5.9%、47±4.9% 和37.9±6.5%,皆大於15% DEET的忌避率 (24.2±24.8%)。土肉桂精油在120鐘內的平均忌避率在精油濃度為20%、10%、5%、2.5%、及1.75%時依序為 66.1±6.7%、68.9±5.3%、51.5±5.5%、26.7±29.9%和41.8±11.1%,皆大於15% DEET的忌避率 (20.5±11.8%)。第四,探討黑心柳杉、土肉桂及過山香精油在濃度分別為20%、10%、5%、2.5%、及1.75%對埃及斑蚊、白線斑蚊、三斑家蚊及白腹叢蚊的忌避率,陽性對照組為15% DEET。ANOVA統計顯示植物物種的忌避力對不同蚊種具有專一性,例如黑心柳杉精油對埃及斑蚊、三斑家蚊及白腹叢蚊忌避效果在120分鐘內皆具良好的忌避能力;然而,白線斑蚊在精油濃度為2.5%及1.75%時,忌避率分別為-2.7±22.4%及-7.4±23.7%,表示黑心柳杉精油對白線斑蚊來說反而具有吸引的效果。再經由LSD事後檢定發現,黑心柳杉及土肉桂在精油濃度為20%及10%時,忌避蚊蟲的效果比過山香來的顯著;而當精油濃度為低濃度5%、2.5%及1.75%時,土肉桂忌避蚊蟲的效果則優於黑心柳杉及土肉桂。本研究以推-發防治策略的整合性概念,分別探討了燈光對臺灣鋏蠓成蟲之吸引率、植物精油對臺灣鋏蠓幼蟲之毒殺率、植物精油對臺灣鋏蠓成蟲及病媒蚊:埃及斑蚊、白線斑蚊、三斑家蚊及白腹叢蚊之忌避率,提供一具環境保護、生態友善且永續的整體防治策略。期待未來將此結果應用在個人保護及戶外環境之防治,以達降低蚊媒傳染病傳播之效。

Mosquito (Culicidae) are the dominant vectors of pathogens that cause infectious disease such as malaria, yellow fever, and especially dengue in the world. Also, Forcipomyia taiwana is a diurnal, tiny, blood-sucking indigenous midge that solely feeds on human and distributes island-wide in Taiwan, either. Individuals expose to midge bites will develop intense pruritus and swelling immediately or delayed allergic responses, causing declination of quality of people’s daily life. Therefore, preventing biting of mosquitoes and nuisance of biting midges by trapping/repelling adults and eliminating larvae is important. This study aims to utilize push-pull strategies to develop an eco-friendly integrative control method, using light-based attraction tool for baiting adults of F. taiwana and to investigate the larvicidal activity of essential oils (EO) against F. taiwana larva, repellent activity of EO against F. taiwana adult and mosquitoes. The first results suggested that visible blue light (wavelength 400~450nm) attracted three times more F. taiwana than UVA light (wavelength 352 nm) and UVB light (wavelength 306 nm) in a small scale experiment, the attraction rate are 70.7%, 18.3% and 16.0% separately. However, as in a field study, visible red light (wavelength 630nm) has the highest attraction rate (7.4%) than visible blue light (1.8%), visible green light (2.2%), full spectra light (2.8%) and UV light (0%). Second, six kinds of EOs from leaves of plants (Cryptomeria japonica, Cinnamomun osmophloeum, Clausena excavate, Gaultheria cumingiana, Cinnamomun brevipedunculatum and Melaleuca alternifolia) were applied with regard to larvicidal activity of F. taiwana larva. The results showed that larvicidal activity of EO is ranged as below: C. osmophloeum = C. excavate > M. alternifolia > G. cumingiana > C. japonica > C. brevipedunculatum. To be more specific, C. osmophloeum completely suppressed larvae activities with a concentration of 7.9 μg/cm2. EO from C. excavate, M.  
alternifolia, G. cumingiana and C. brevipedunculatum showed larvicidal activity with 0%, 20%, 50% and 86.7% of larvae survived with concentration of 15.8 μg/cm2. Third, the repellency of C. japonica, C. osmophloeum and C. excavate against F. taiwana were evaluated at EO concentration 20%, 10%, 5%, 2.5%, 1.75%. 15% DEET is positive control. The results reveal that the average repellency of C. japonica ranged as 40.9±15%, 59.1±13.2%, 55.1±5.9%, 47±4.9% and 37.9±6.5% in 120 mins, which are all higher than 15% DEET’s repellency: 24.2±24.8%. Also, C. osmophloeum exhibited the best repellent activity ranged as 66.1±6.7%, 68.9±5.3%, 51.5±5.5%, 26.7±29.9% and 41.8±11.1% in 120 min, which are all higher than 15% DEET’s repellency: 20.5±11.8%, either. Forth, the repellency of C. japonica, C. osmophloeum and C. excavate against Aedes aegypti, Aedes albopictus, Culex tritaeniorhynchus and Armigeres subalbatus were evaluated at EO concentration 20%, 10%, 5%, 2.5%, 1.75%. 15% DEET is positive control. The ANOVA statistics results showed that each kind of EO had repellency specificity toward different species of mosquitoes. For example, C. japonica had well repellency against Ae. aegypti, Cx. tritaeniorhynchus and Ar. subalbatus, yet it had repellency -2.7±22.4% and -7.4±23.7% toward Ae. albopictus at lower concentration 2.5% and 1.75% respectively, showed that it possessed attraction activity. Moreover, with Fisher least significant difference (LSD) Test, it showed that C. osmophloeum and C. japonica had higher repellency than C. excavate at high concentration 20% and 10%; besides, C. osmophloeum still exhibited highest repellency at low concentration 5%, 2.5% and 1.75%. Based on the above results, the EO of C. osmophloeum showed the greatest repellency. This study utilize the integrative concept of Push-Pull Control Strategy to determine the attraction rate of light trap toward F. taiwana adult in small scale and field study, the larvicidal activity of essential oils against F. taiwana larva, and the repellency of essential oils against F. taiwana adult and mosquito, providing an sustainable, feasible, and eco-friendly integrated methods for pest control. In the future, we expect that our promising findings can be widely applied into personal protection and outdoor environment control, in order to decrease the transmission of mosquito-borne diseases.

論文口試審定書 I
致謝 II
中文摘要 III
ABSTRACT V
第一章、 緒論 1
1.1臺灣重要病媒蚊及其危害 1
1.2臺灣鋏蠓及其危害 2
1.3現行病媒蚊及臺灣鋏蠓防治方法與限制 3
1.3.1病媒蚊防治方法與限制 3
1.3.2臺灣鋏蠓防治方法與限制 6
第二章、 前人研究 9
2.1推拉防治策略及其應用 9
2.2物理性光源誘引蚊蟲之研究 13
2.3植物精油之蚊蟲忌避劑 14
2.3.1蚊蟲忌避劑之應用及歷史 14
2.3.2精油忌避蚊蟲原理 15
2.3.3植物精油忌避蚊蟲之研究 16
2.3.4臺灣植物精油忌避蚊蟲之研究 17
2.4植物精油之幼蟲毒殺劑 18
2.4.1植物精油毒殺幼蟲之研究 18
2.4.2臺灣植物精油毒殺幼蟲之研究 19
第三章、 材料與方法 21
3.1蚊蟲飼養 21
3.1.1病媒蚊 21
3.1.2臺灣鋏蠓 22
3.2物理性光源誘引試驗 23
3.2.1臺灣鋏蠓對不同波長燈光偏好性之比較 23
3.2.2田野試驗初探 24
3.3植物精油毒殺幼蟲活性 25
3.3.1臺灣植物精油 25
3.3.2精油萃取方法 26
3.3.3不同精油濃度之抗幼蟲活性 26
3.4植物精油忌避成蟲活性 27
3.4.1忌避裝置 27
3.4.2實驗方法 28
3.4.3不同精油濃度之忌避成蟲活性 30
3.5統計分析 31
第四章、 結果 32
4.1臺灣鋏蠓對物理性光源誘引偏好性分析 32
4.1.1臺灣鋏蠓對不同波長光源偏好性 32
4.1.2田野試驗初探 32
4.2植物精油對臺灣鋏蠓毒殺及忌避率之分析 33
4.2.1植物精油毒殺臺灣鋏蠓幼蟲活性 33
4.2.2植物精油忌避臺灣鋏蠓成蟲活性 34
4.2.3 植物精油種類對臺灣鋏蠓之半數忌避劑量ED50(%) 35
4.3植物精油對病媒蚊之忌避率分析 36
4.3.1 植物精油種類在不同濃度下之忌避率分析 37
4.3.2 植物精油種類對不同蚊種之半數忌避劑量ED50(%) 40
第五章、 討論 41
5.1臺灣鋏蠓物理性光源誘引偏好性分析 41
5.2植物精油對臺灣鋏蠓毒殺及忌避率分析 42
5.2.1植物精油毒殺臺灣鋏蠓幼蟲活性 42
5.2.2植物精油忌避臺灣鋏蠓成蟲活性 44
5.3植物精油對病媒蚊之忌避率分析 44
5.3.1 植物精油種類在不同濃度下之忌避率分析 44
5.3.2植物精油種類對不同蚊種之半數忌避劑量ED50(%) 45
參考文獻 47
圖目錄 55
表目錄 58
附錄 59

Ansari, M. A., P. K. Mittal, R. R. K. and S. U. (2005). Larvicidal and mosquito repellent activities of Pine (Pinus longifolia, family: pinaceae) oil. J Vector Borne Dis 42: 95-99.
Antwi, F. B., L. M. Shama and R. K. Peterson. (2008). Risk assessments for the insect repellents DEET and picaridin. Regul Toxicol Pharmacol 51(1): 31-36.
Bakkali, F., S. Averbeck, D. Averbeck and M. Idaomar. (2008). Biological effects of essential oils--a review. Food Chem Toxicol 46(2): 446-475.
Barnard, D. R. and R. D. Xue. (2004). Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol 41(4): 726-730.
Bentley., M. T., P. E. Kaufman., D. L. Kline. and J. A. Hogsette. (2009). Response of adult mosquitoes to light-emitting diodes placed in resting boxes and in the field. J Am Mosq Control Assoc 25(3): 285-291.
Bishop, A. L., G. A. Bellis, H. J. McKenzie, L. J. Spohr, R. J. Worrall, A. M. Harris and Melville, L. (2006). Light trapping of biting midges Culicoides spp. (Diptera: Ceratopogonidae) with green light-emitting diodes. Aust. J. Entomol 45(3): 202-205.
Blackwell, A., Evans, K. A., Strang, R. H. and Cole M. (2004). Toward development of neem-based repellents against the Scottish Highland biting midge Culicoides impunctatus. Med Vet Entomol 18: 449-452.
Bohbot, J. D., L. Fu, T. C. Le, K. R. Chauhan, C. L. Cantrell and J. C. Dickens. (2011). Multiple activities of insect repellents on odorant receptors in mosquitoes. Med Vet Entomol 25(4): 436-444.
Briscoe, A. D. and L. Chittka. (2001). The evolution of color vision in insects. Annu Rev Entomol 46: 471-510.
Brown, M. and A. A. Hebert. (1997). Insect repellents: an overview. J Am Acad Dermatol 36(2): 243–249.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 94(3): 223-253.
C. Kamaraj, A. Bagavan, G. Elango, A. Abduz Zahir, G. Rajakumar, S. Marimuthu, T. Santhoshkumar. and A. A. Rahuman. (2011). Larvicidal activity of medicinal plant extracts against Anopheles. Indian J Med Res 134(1): 101-106.
Carpenter, S., M. H. Groschup, C. Garros, M. L. Felippe-Bauer and B. V. Purse. (2013). Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res 100(1): 102-113.
Chang, S. F., C. F. Yang, T. C. Hsu, C. L. Su, C. C. Lin and P. Y. Shu. (2016). Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014. Am J Trop Med Hyg 94(4): 804-811.
Chen, C. S., Y. N. Lin, C. I. Chung, and H. Hung. (1979). Preliminary observations on the larval breeding sites and adult resting places of a bloodsucking midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Nat’l Chung Hsing Univ. Bull. Soc. Entomol. 14:51-59
Chen-Hussey, V., R. Behrens and J. G. Logan. (2014). Assessment of methods used to determine the safety of the topical insect repellent N,N-diethyl-m-toluamide (DEET). Parasit Vectors 173:1-7.
Chen, Y.-H., M.-F. Lee, J.-J. Tsai, H.-J. Wu and G.-Y. Hwang. (2009). Specific IgE and IgG Responses and Cytokine Profile in Subjects with Allergic Reactions to Biting Midge Forcipomyia taiwana. Int Arch Allergy Immunol 150(1): 66-74.
Chen., Y. H., G. Y. Hwang., P. C. Chen., W. C. Tu. and M. F. Lee. (2011). Molecular cloning and immunologic characterization of For t 2a major allergen from the biting midge Forcipomyia taiwana. Allergy 66(5):703-705.
Cheng, S. S., H. T. Chang, C. Y. Lin, P. S. Chen, C. G. Huang, W. J. Chen and S. T. Chang. (2009). Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci 65(3): 339-343.
Cheng, S. S., M. T. Chua, E. H. Chang, C. G. Huang, W. J. Chen and S. T. Chang. (2009). Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol 100(1): 465-470.
Cheng, S. S., C. G. Huang, W. J. Chen, Y. H. Kuo and S. T. Chang. (2008). Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species. Bioresour Technol 99(9): 3617-3622.
Cheng, S. S., C. G. Huang, Y. J. Chen, J. J. Yu, W. J. Chen and S. T. Chang. (2009). Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol 100(1): 452-456.
Cheng, S. S., C. Y. Lin, M. J. Chung, Y. H. Liu, C. G. Huang and S. T. Chang. (2013). Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod 47: 310-315.
Cheng., S. S., H. T. Chang., S. T. Chang., K. H. Tsai. and W. J. Chen. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89(1): 99-102.
Cheng., S. S., J. Y. Liu., K. H. Tsai., W. J. Chen. and S. T. Chang. (2004). Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52(14): 4395-4400.
Chuang, Y. Y., C. S. Lin, C. H. Wang and C. C. Yeh. (2000). Distribution and Seasonal Occurrence of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the Nantou Area in Taiwan. J Med Entomol 37(2): 205-209.
Cook, S. M., Z. R. Khan and J. A. Pickett. (2007). The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52: 375-400.
Costantini, C., M. A. Birkett, G. Gibson, J. Ziesmann, N. Sagnon, H. A. Mohammed, M. Coluzzi and J. A. Pickett. (2001). Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat. Med Vet Entomol. 15(3): 259-66
Davis., E. E. and P. G. Sokolove. (1976). Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. comp. Physiol. 105(1): 43-54.
Dickens, J. C. and J. D. Bohbot. (2013). Mini r.view: Mode of action of mosquito repellents. Pest Biochem Physiol 106(3): 149-155.
Ditzen., M., M. Pellegrino. and L. B. Vosshall. (2008). Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319(5871): 1838-1842.
Dubois, J. N. G. O. E. a. A. F. J. (2003). Quality of life in insect venom allergic patients. Curr Opin Allergy Clin Immunol 3(4): 287-293.
Gonzalez, M., G. J. Venter, S. Lopez, J. C. Iturrondobeitia and A. Goldarazena. (2014). Laboratory and field evaluations of chemical and plant-derived potential repellents against Culicoides biting midges in northern Spain. Med Vet Entomol 28(4): 421-431.
Greive., K. A., J. A. Staton., P. F. Miller., B. A. Peters. and V. M. J. Oppenheim. (2010). Development of Melaleuca oils as effective natural-based personal insect repellents. Aust. J. Entomol. 49(1): 40-48.
Gu, H. J., S. S. Cheng, C. Y. Lin, C. G. Huang, W. J. Chen and S. T. Chang. (2009). Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae). J Agric Food Chem 57(23): 11127-11133.
Huai-Hui Wu, Ying-Hsi Lin, Hsiu-Hua Pai, Err-Lieh Hsu, Niann-Tai Chang and Y.-P. Luo. (2014). Insecticide resistance status in Aedes aegypti (L.) Adults from southern Taiwan. Formosan Entomologist 33: 253-270.
Jirakanjanakit N., Rongnoparut P., Saengtharatip S., Chareonviriyaphap T., Duchon S., Bellec C. and Y. S. (2007). Insecticide Susceptible Resistance Status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera Culicidae) in Thailand During 2003–2005. J Econ Entomol. 100(2): 545-550.
Katz, T. M., J. H. Miller and A. A. Hebert. (2008). Insect repellents: historical perspectives and new developments. J Am Acad Dermatol 58(5): 865-871.
Kilpatrick, A. M. (2011). Globalization, land use, and the invasion of West Nile virus. Science 334(6054): 323-327.
Kim, S. I., K. S. Chang, Y. C. Yang, B. S. Kim and Y. J. Ahn. (2004). Repellency of aerosol and cream products containing fennel oil to mosquitoes under laboratory and field conditions. Pest Manag Sci 60(11): 1125-1130.
Knight, K.L. and A. Stone. (1977). A Catalog of the Mosquitoes of the World (Diptera:
Culicidae). 2nd ed. Entomol. Soc. Am 6: 611.
Koutsaviti, K., A. Giatropoulos, D. Pitarokili, D. Papachristos, A. Michaelakis and O. Tzakou. (2015). Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol Res 114(2): 583-592.
Kuo, P.-M., F.-H. Chu, S.-T. Chang, W.-F. Hsiao and S.-Y. Wang. (2007). Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung 61(5): 595-599.
Liu, F., L. Chen, A. G. Appel and N. Liu. (2013). Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus. J Insect Physiol 59(11): 1169-1177.
Maclachlan, N. J. and C. E. Mayo. (2013). Potential strategies for control of bluetongue, a globally emerging, Culicoides-transmitted viral disease of ruminant livestock and wildlife. Antiviral Res 99(2): 79-90.
Maia, M. F. and S. J. Moore. (2011). Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10 Suppl 1: S11: 1-14.
Menger, D. J., P. Omusula, M. Holdinga, T. Homan, A. S. Carreira, P. Vandendaele, J. L. Derycke, C. K. Mweresa, W. R. Mukabana, J. J. van Loon and W. Takken. (2015). Field evaluation of a push-pull system to reduce malaria transmission. PLoS One 10(4): 1-20.
Menger, D. J., J. J. Van Loon and W. Takken. (2014). Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28(4): 407-413.
Menger., D. J., B. Otieno., M. d. Rijk., W. R. Mukabana., J. J. v. Loon. and W. Takken. (2014). A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13(119): 1-8.
Miller, J. R. and R. S. Cowles. (1990). Stimulo-deterrent diversion a concept and its possible. J Chem Ecol 16(11): 3197-3212.
Obermayr, U., J. Ruther, U. Bernier, A. Rose and M. Geier. (2012). Laboratory evaluation techniques to investigate the spatial potential of repellents for push and pull mosquito control systems. Med Vet Entomol 49(6): 1387-1397.
Pages, N., E. Breard, C. Urien, S. Talavera, C. Viarouge, C. Lorca-Oro, L. Jouneau, B. Charley, S. Zientara, A. Bensaid, D. Solanes, J. Pujols and I. Schwartz-Cornil. (2014). Culicoides midge bites modulate the host response and impact on bluetongue virus infection in sheep. PLoS One 9(1): 1-9.
Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind Crops Prod 76: 174-187.
Pitts, R. J., R. Mozuraitis, A. Gauvin-Bialecki and G. Lemperiere. (2014). The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Trop 132 Suppl: S26-34.
Pyke, B., Rice, M., Sabine, B. & Zalucki, M. (1987). The push–pull strategy—
behavioural control of Heliothis. Aust. Cotton Grower 4, 7–9
Rafael Lozano, et, al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study. (2010). Lancet 380: 2095-2128.
Ravi Kiran, S., K. Bhavani, P. Sita Devi, B. R. Rajeswara Rao and K. Janardhan Reddy.(2006). Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97(18): 2481-2484.
Rehman, J. U., A. Ali and I. A. Khan. (2014). Plant based products: use and development as repellents against mosquitoes: A review. Fitoterapia 95: 65-74.
S. Carpenter, P. S. M., S. J. Torr. (2008). Control techniques for Culicoides biting midges and their application in the U.K. and northwestern Palaearctic. Med Vet Entomol 2: 175-187.
Stella Nerio, L., J. Olivero-Verbel and E. Stashenko. (2010). Repellent activity of essential oils: A review. Bioresour Technol 101(1): 372-378.
Vontas, J., E. Kioulos, N. Pavlidi, E. Morou, A. della Torre and H. Ranson. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pest Biochem Physiol 104(2): 126-131.
Wagman, J. M., J. P. Grieco, K. Bautista, J. Polanco, I. Briceno, R. King and N. L. Achee. (2015). The field evaluation of a push-pull system to control malaria vectors in northern Belize, Central America. Malar J 14(184): 1-11.
WHO (2008). The global burden of disease: 2004 update. Geneva, Switzerland: World Health Organization.
WHO (2012). Global Strategy for dengue prevention and control, 2012–2020.
Lien, J. C. (1989). Taxonomic and ecological studies on the biting midges of the subgenus Lasiohelea, genus Forcipomyia from Taiwan. J. Taiwan Mus. 42: 37-77.
Lien, J. C. (1991). Severe new species and four new record of Forcipomyia subgenus Lasiohelea from Taiwan (Diptera: Ceratopogonidae). J. Taiwan Mus 44:83-116.
Lupi, E., Hatz, C., and Schlagenhauf, P. (2013). The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. – A literature review. Travel Med Infect Dis 11(6): 374-411.
行政院環保署2014 http://www.epa.gov.tw/ct.asp?xItem=33308&ctNode=33329&mp=epa
連日清。2004。臺灣蚊種檢索。藝軒圖書出版。178頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top