跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祐如
研究生(外文):Yu-Ju Lin
論文名稱:評估matK、rbcL及trnL-L-F分子條碼對台灣蕨類鑑種之效力
論文名稱(外文):Assessment on DNA discriminatory powers of matK, rbcL, and trnL-L-F on Taiwanese ferns
指導教授:王俊能
指導教授(外文):Chun-Neng Wang
口試委員:黃曜謀黃俊霖張和明
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:108
中文關鍵詞:分子條碼台灣蕨類植物matKrbcLtrnL-L-F引子通用性定序序列品質(物種)區別成功(物種)區別效力
外文關鍵詞:DNA barcodebarcoding gapprimer universalitysequencing qualitydiscrimination successdiscriminatory power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蕨類配子體型態矮小相似,無足夠外型特徵以成功鑑別物種,但使用DNA分子條碼可提供較足夠的分子特徵,解決外部型態特徵鑑別蕨類配子體與未鑑別物種之困難。然而目前蕨類植物無一個通用所有物種的分子條碼,本研究以蕨類研究常用的matK、rbcL及trnL-L-F三個分子條碼區段,依據引子通用性(PCR成功率高低)、定序序列品質(扣除因重複鹼基造成讀序失敗後之成功率)、與物種區別效力(最小種間遺傳距離是否大於最大種內距離、種內個體能否形成單系群)三項標準加以評估效力,選取最有潛力發展為通用的蕨類植物分子條碼。
本研究樣囊括分類階層範圍為台灣蕨類植物28科77屬217種。第一項評估PCR成功率結果,trnL-L-F可成功放大99.33%物種、rbcL達88.55%、matK為67.34%
,若採取通用性加類群專一性兩階段引子放大matK,PCR成功率提高為85.86%。第二項定序品質成功率,在rbcL為100%、matK為98.01%、trnL-L-F為86.69%。第三項物種區別效力中,種間大於種內遺傳距離差距(Barcoding gap物種對)比例trnL-L-F為95.61%、rbcL為95.42%、matK為87.70%。種內個體形成單系群比例trnL-L-F為90%、rbcL為85%、matK為82%。綜合三項標準,trnL-L-F具最高分子條碼效力。本研究因廣泛取樣跨類群之台灣蕨類植物,對比過去其他研究大多僅採用一項標準的結果更為可信,由於trnL-L-F物種區別效力之種間種內遺傳距離差距比例與單系群比例,均超過90%,單一條碼trnL-L-F即可在蕨類通用性鑑種。


Identification of fern species, and particularly fern gametophyte is a difficult task because there are not many morphological characters available. DNA barcoding helps to identify morphologically related gametophytes and unidentified specimens with molecular characters. However, there is only a few works on developing universal DNA-barcode in ferns. In this study, I evaluated discriminatory powers of three chloroplast barcodes, matK, rbcL and trnL-L-F, by proposed criteria such as primer universality (PCR success rate), sequence quality (mononucleotide repeats disrupting individual sequencing reads) and discrimination success. The discrimination success of species is accessed by two different methods for comparison. A distance-based analysis checks if the minimum uncorrected interspecific P-distance involving a species was larger than its maximum intraspecific distance (indication of a barcoding gap); and a Bayesian phylogenetic analysis examines whether individuals of the same species can be clustered together (checking for porportions of well-supported monophyly of species).
28 fmailies 77 genera 217 species of the Taiwanese ferns were selected to assess DNA discriminatory powers of matK、rbcL and trnL-L-F. Primer universality assessment resulted in 99.33% PCR success rate for trnL-L-F, the highest among three; mean while, 88.55% for rbcL and 67.34% for matK. To improve the success rate of matK, two-stage PCR (universal primer pairs then lineage-specific primer pairs) were performed, the new matK success rate increased to 85.86%. Sequence quality checking resulted in 100% rbcL sequences no disrupting reads caused by mononucleotide repeat (tandem repeat), whereas 98.01% in matK and 86.69 % in trnL-L-F. Barcoding gaps can be found in 95.61% trnL-L-F pairwise distance, 95.42% by rbcL and 87.70% by matK. On the other hand, the discrimination success inferred by Basyien monophyly indicated 90% of within-species trnL-L-F sequences were successfully resolved when forming a monophyletic group with sufficient bootstrap support, in rbcL this was 85% and in matK this was 82%. To sum up, trnL-L-F has the highest discriminatory power to tell different fern species apart. Because the discrimination success of trnL-L-F in our well-sampled Taiwanese ferns is above 90%, higher enough to be the most universal DNA barcode for ferns.


目錄 Ⅰ
摘要 Ⅲ
Abstract Ⅳ
第一章、前言…………………………………………………......................................1
一、分子條碼對蕨類植物研究之重要性…………………………………............1
二、分子條碼法則與應用…………………….…………………………………...1
三、評估分子條碼之準則與策略…………………………………………………2
四、分子條碼研究現況…………………………………………………................4
五、具潛力候選分子條碼…………………………………………………............5
六、研究理論策略架構及目的………………………………………....................6
第二章、材料與實驗方法………………………………………...................................9
一、取樣材料………………………………………………….................................9
二、實驗方法流程………………………………………………….........................9
(一) DNA萃取…………………........................................................................9
(二) 聚合酶鏈鎖反應及定序……...................................................................11
(三) 序列排列與分析………….......................................................................11
第三章、分析方法.................................................................................................13
一、聚合酶連鎖反應擴增序列成功率...............................………......……….......13
二、重複鹼基序列中斷讀序比例…………………................................................13
三、物種鑑別成功率…………................................................................................13
(一) 種間及種內遺傳距離差距 (barcoding gap) 物種對比例….....…...….13
(二) 成功鑑別物種單系群比例.......................................................................14
第四章、結果…………………………………………………………......………........16
一、引子通用性之測試…………………………………………………………..16
二、定序品質之評估………………………………………………………….....16
三、物種區別效力之計算…………………………………………………….....17
(一)Barcoding gap物種對比例......................................................................17
(二)成功鑑別物種單系群之比例...................................................................19
第五章、討論........................................................................................................22
一、引子通用性trnL-L-F最高.............................................................................22
二、定序品質rbcL最佳........................................................................................23
三、物種區別效力trnL-L-F最佳..........................................................................24
四、trnL-L-F、rbcL和matK優缺點.....................................................................29
五、結合數段分子條碼以達最高蕨類物種區別效力評估..................................30
第六章、貢獻與展望...............................................................................................32
參考文獻…………….................................................................................................34
圖………………….....................................................................................................41
表………………......................................................…...............................................44
附錄…...........................………………………….….................................................53


Atkinson, L. R., & Stokey, A. G. (1964). Comparative morphology of the gametophyte of homosporous ferns. Phytomorphology, 14, 51-70.
Bafeel, S. O., Arif, I. A., Bakir, M. A., Khan, H. A., Al Farhan, A. H., Homaidan, A. A., Ahamed, A., Thomas, J., & Thomas, J. (2011). Comparative evaluation of PCR success with universal primers of maturase K (matK) and ribulose-1,5-bisphosphate carboxylase oxygenase large subunit (rbcL) for barcoding of some arid plants. Plant Omics, 4(4), 195.
Barrington, D. S., Haufler, C. H., & Werth, C. R. (1989). Hybridization, reticulation, and species concepts in the ferns. American Fern Journal, 79(2), 55-64.
Bhau, B. S., Gogoi, G., Baruah, D., Ahmed, R., Hazarika, G., Borah, B., Gogoi, B., Sarmah, D.K., Nath, S.C., & Wann, S. B. (2015). Development of an effective and efficient DNA isolation method for Cinnamomum species. Food chemistry, 188, 264-270.
Boyer, S., Brown, S. D., Collins, R. A., Cruickshank, R. H., Lefort, M. C., Malumbres-Olarte, J., & Wratten, S. D. (2012). Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA. PLoS One, 7(5), e38215.
Brown, S. D., & Collins, R. A. (2011). Spider: Species Identity and Evolution in R..A Tutoria. Retrieved from http://spider.r-forge.r-project.org/tutorial/tutorial.pdf.
CBOL Plant Working Group, Hollingsworth, P. M., Forrest, L. L., Spouge,J. L.,
Hajibabaei, M., Ratnasingham, S., van der Bank M., Chase M. W., Cowan R. S.,
Erickson D. L., Fazekas A. J.,Graham S.W., James K.E., Kim K.J., Kress W. J.,
Schneider H., van Alphen S. J., Barrett S.C., van den Berg C., Bogarin D., Burgess K. S., Cameron K.M., Carine M., Chacón J., Clark A., Clarkson J.J., Conrad F., Devey D.S., Ford C.S., Hedderson T.A., Hollingsworth M.L., Husband B.C., Kelly L.J.,Kesanakurti P.R., Kim J.S., Kim Y.D., Lahaye R., Lee H.L., Long D.G., Madriñán S., Maurin O., Meusnier I., Newmaster S.G., Park C.W., Percy D.M., Petersen G., Richardson J.E., Salazar G.A., Savolainen V., Seberg O., Wilkinson M.J., Yi D.K., Little D.P.. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797.
Chao, Y. S., Liu, H. Y., Huang, Y. M., & Chiou, W. L. (2010). Reproductive traits of Pteris cadieri and P. grevilleana in Taiwan: Implications for their hybrid origin. Botanical Studies, 51(2), 209-216.
Chariton, A. (2012). Short and informative DNA products to indirectly measure vascular plant biodiversity. Molecular ecology, 21(15), 3637-3639.
Chase, M. W., Cowan, R. S., Hollingsworth, P. M., van den Berg, C., Madriñán, S., Petersen, G., Seberg, O., Jrgsensen T., Cameron, K. M., (2007). A proposal for a standardised protocol to barcode all land plants. Taxon, 56(2), 295-299.
Chase, M. W., & Fay, M. F. (2009). Barcoding of plants and fungi. Science, 325(5941), 682-683.
陳正為. (2010). 探討台灣產陰石蕨複合種群之演化歷史. 中興大學園藝學系所學位論文, 1-101.
Chen, C. W., Huang, Y. M., Kuo, L. Y., Nguyen, Q. D., Luu, H. T., Callado, J. R. Callado, D. R. Farrar & Chiou, W. L. (2012). trnL-F is a powerful marker for DNA identification of field vittarioid gametophytes (Pteridaceae). Annals of botany, 111(4), 663-673.
Collins, R. A., Boykin, L. M., Cruickshank, R. H., & Armstrong, K. F. (2012). Barcoding''s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods in Ecology and Evolution, 3(3), 457-465.
CSHL DNA Learning Center : Barcoding 101 of Cold Spring Harbor Laboratory (2014). DNA Barcodes to Identify and Classify Living Things: introduction. Retrieved from http:// www.dnabarcoding101.org/introduction.html.
de Groot, G. A., During, H. J., Maas, J. W., Schneider, H., Vogel, J. C., & Erkens, R. H. (2011). Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PLoS one, 6(1), e16371.
Dong, W., Liu, H., Xu, C., Zuo, Y., Chen, Z., & Zhou, S. (2014). A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC genetics, 15(1), 138.
Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., Cheng, T & Zhou, S. (2015). ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports (5), Article number: 8348 (2015).Drouin, G., Daoud, H., & Xia, J. (2008). Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Molecular Phylogenetics and Evolution, 49(3), 827-831.
Ebihara, A., Nitta, J. H., & Ito, M. (2010). Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PLoS one, 5(12), e15136.
Farrar, D. R., Dassler, C., Watkins Jr, J. E., & Skelton, C. (2008). Gametophyte ecology. Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, 222-256.
Fazekas, A. J., Steeves, R., & Newmaster, S. G. (2010). Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques, 48(4), 277-285.
Hebert, P. D., Cywinska, A., & Ball, S. L. deWaard JR.(2003). Biological identifications through DNA barcodes. In Proc R Soc Lond B 2003 270, 313-321.doi:10.1098/rspb.2002.2218.
Heckenhauer, J., Barfuss, M. H., & Samuel, R. (2016). Universal Multiplexable MatK Primers for DNA Barcoding of Angiosperms. Applications in Plant Sciences, 4(6), 1500137.
Heise, W., Babik, W., Kubisz, D., & Kajtoch, L. (2015). A three‐marker DNA barcoding approach for ecological studies of xerothermic plants and herbivorous insects from central Europe. Botanical Journal of the Linnean Society, 177(4), 576-592.
Hollingsworth, M. L., ANDRA CLARK, A. L. E. X., Forrest, L. L., Richardson, J., Pennington, R., Long, D. G., Cowan, R., Chase, M. W., Gaudeul, M. & Hollingsworth, P. M. (2009). Selecting barcoding loci for plants: evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants. Molecular Ecology Resources, 9(2), 439-457.
Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. PloS one, 6(5), e19254.
Knapp, R. (2011). Ferns and Fern Allies of Taiwan (英文版). KBCC Press.
Zhang, L. B., & He, H. (2013). Ferns and Fern Allies of Taiwan. American Fern Journal, 103(3), 191-192.
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369-8374.
Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. Plos one, 2(6), e508.
Latinne, A., Galan, M., Waengsothorn, S., Rojanadilok, P., Eiamampai, K., Sribuarod, K., & Michaux, J. R. (2014). Diet analysis of Leopoldamys neilli, a cave-dwelling rodent in Southeast Asia, using Next-Generation Sequencing from feces. Journal of Cave and Karst Studies, 76(2), 139.
Lawson Handley, L. (2015). How will the ‘molecular revolution’contribute to biological recording?. Biological Journal of the Linnean Society, 115(3), 750-766.
Levin, D. A. (2002). The role of chromosomal change in plant evolution. Oxford University Press, Oxford, UK.240pp.
Li, F. W., Kuo, L. Y., Rothfels, C. J., Ebihara, A., Chiou, W. L., Windham, M. D., & Pryer, K. M. (2011). rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS One, 6(10), e26597.
Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biological Reviews, 90(1), 157-166.
Liu Y, Yan H-F, Cao T, Ge X-J (2010) Evaluation of 10 plant barcodes in Bryophyta
(Mosses). J Syst Evol 48: 36–46.
Lovis, J. D. (1978). Evolutionary patterns and processes in ferns. Advances in botanical research, 4, 229-415.
Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC genomics, 9(1), 214.
Meyer, C. P., & Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS biol, 3(12), e422.
Nayar, B. K., & Kaur, S. (1971). Gametophytes of homosporous ferns. The Botanical Review, 37(3), 295-396.
Nitta, J. H. (2008). Exploring the utility of three plastid loci for biocoding the filmy ferns (Hymenophyllaceae) of Moorea. Taxon, 57(3), 725-725.
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular biology and evolution, 25(7), 1253-1256.
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574.
Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94: 275–288.
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 705-731.
Soininen, E. M., Valentini, A., Coissac, E., Miquel, C., Gielly, L., Brochmann, C., Brysting, A. K., Snsteb, H. J., Ims, R. A., Yoccoz, N. G., & Taberlet, P. (2009). Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Frontiers in Zoology, 6(1), 1.
Soltis, D. E., Soltis, P. S., & Tate, J. A. (2004). Advances in the study of polyploidy since plant speciation. New phytologist, 161(1), 173-191.
Stokey, A. G. (1951). The contribution by the gametophyte to classification of the homosporous ferns. Phytomorphology, 1(1-2), 39-58.
Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), 1105-1109.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.
The Plant List (2013). Version 1.1 Published on the Internet; http://www.theplantlist.org /(accessed 1st January).
Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists. Trends in Ecology & Evolution, 24(2), 110-117.
Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E., Pompanon, F.,Gielly, L., Cruaud, C., Nascetti, G., Wincker, P., Taberlet, P. & Swenson, J. E. (2009). New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Resources. 2009 Jan;9(1):51-60. doi: 10.1111/j.1755-0998.2008.02352.x. Epub 2008 Oct 22.
Vanijajiva, O., Sirirugsa, P., & Suvachittanont, W. (2005).Confirmation of relationships among Boesenbergia (Zingiberaceae) and related genera by RAPD. Biochemical Systematics and Ecology, 33(2), 159-170.
Wang, C. N., Möller, M., & Cronk, Q. C. (2004). Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions.Systematic Botany, 29(2), 407-418.
Watkins, J. E., Mack, M. K., & Mulkey, S. S. (2007). Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany, 94(4), 701-708.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top